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A B S T R A C T   

Nano-hydroxyapatite was synthesized from CaCO3 and waste eggshells reacting with ortho-phosphoric acid, and 
titanium was doped to enhance the photocatalytic activity. The sample was characterized by X-ray diffraction 
technique, and different crystallographic parameters were explored focusing on crystallite size, microstrain, 
crystallinity index, lattice parameter, degree of crystallinity, microstrain, volume fraction of β-TCP, percentage of 
HAp, percentage of β-TCP, dislocation density, volume of unit cell, etc. To justify nano-crystallite size different 
models and equations such as the Williamson-Hall plot, linear straight -line model, Monshi-Scherrer model, 
Sahadat-Scherrer model, etc were employed. The effects of photocatalytic activity of synthesized hydroxyapatites 
were evaluated by varying the dye concentration, pH, interaction time, catalyst dose, and light source (halogen 
and sunlight). The photocatalytic activity was evaluated by degrading Congo Red dye and a relation was built 
between crystallographic parameters and catalysis. An easy degradation mechanism was also proposed for the 
Congo red dye using hydroxyapatite.   

1. Introduction 

Photocatalysts are the components with the ability to breakdown a 
wide range of chemicals (organic [1], petrochemicals [2], pharmaceu-
ticals [3], etc.) and disinfect a wide variety of pathogens [4] (bacteria, 
viruses, fungi, and protozoan cells. As photocatalysts, several materials 
are used, including titanium dioxide (TiO2), zinc oxide (ZnO), tin oxide 
(SnO2), tungsten oxide (WO3), cadmium sulfide (CdS), zinc sulfide 
(ZnS), cadmium selenide (CdSe), tungsten disulfide (WS2), molybdenum 
disulfide (MoS2), etc. [5,6]. One of the most promising uses of photo-
catalysts for water purification is advanced oxidation processes (AOPs) 
[7]. The nature, morphology, and concentration of the catalyst play 
crucial roles in the photocatalytic reaction process [8]. 

Hydroxyapatite is a phosphate-based bioceramic with the chemical 
formula Ca10(PO4)6(OH)2, and it can have either a monoclinic or hex-
agonal structure [9]. Hydroxyapatites are widely used in the biomedical 
sectors in their pure form or doped with different types of metal for 
enhanced biomedical properties [10]. It is a heterogeneous catalyst in 

the broadest sense. In addition to moderate and complete oxidation 
[11], it is also used in the deposition of metals, dehydrogenation [12], 
the elimination of gaseous pollutants [13], the isotopic exchange of 18O2 
for16O2 [14], the transfer of hydrogen [15], and the treatment of 
wastewater [16]. Several forms of hydroxyapatite, including unmodi-
fied hydroxyapatite, modified hydroxyapatite, doped hydroxyapatite, 
and multiphasic hydroxyapatite, can be used to make them efficient 
photocatalysts. To alter the morphology and improve photocatalytic 
effectiveness, numerous synthesis techniques have also been explored. 
Its photocatalytic efficiency has been greatly improved by using tran-
sition metal replacement, biphasic preparation with metal oxide semi-
conductors, and powder composites [17]. Across the world, the textile 
industry is a major contributor to pollution due to the large volumes of 
wastewater effluents it discharges into the environment. The textile 
industry’s wastes are widely recognized as being particularly hazardous 
due to the wide variety of toxic compounds they contain and pollution 
from these pollutants is harmful to aquatic life and should be avoided at 
all costs. 
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Among them, dye pollution is easily observable since it is synthetic, 
has a complex structure, and is thus insoluble in water; it is also non- 
biodegradable and has a high biological oxygen need and chemical ox-
ygen demand. There are about a hundred thousand different dyes 
available for purchase, and over 700,000 tons of dye are manufactured 
each year for application in textile industries [18]. This is due to the 
complex aromatic chemical structures of synthetic dyes, which have 
been linked to cancer and mutations. All over the world, nearly 
1,000,000 tons of different types of dyes are used for various types of 

industries such as food, tanneries, textile, medicinal sectors, and cos-
metics [19]. 

fibers which causes severe pollution [20]. The textile dyeing sector is 
one of the worst offenders when it comes to excessive dye use [21]. 
Typically, 10–15 % of the dye remains unfixed during this procedure, 
and this percentage is subsequently discharged into the industrial 
effluent. As a result, 2–20 % of employed colors are released directly into 
aquatic bodies as aqueous effluents [22]. And, 80 % of the total envi-
ronmental pollution caused by the textile industries is responsible for 

Fig. 1. XRD patterns of the Standard card (01–074-0566), and synthesized Raw_HAp, E_HAp, C_HAp, and Ti_HAp.  

Table 1 
Comparison of obtained and calculated data with standard JCPDS data (d in Å).  

Parameter ICDD-HAp Raw-HAp C_HAp E_HAp Ti doped HAp 

h k l 
1 2 1 
1 1 2 
3 0 0  

d 
2.815 
2.778 
2.720  

d 
2.799 
2.716 
2.717  

d 
2.814 
2.778 
2.718  

d 
2.807 
2.772 
2.722  

d 
2.804 
2.637 
2.637 

Lattice parameter (Å)  a = b = 9.42 
c = 6.88  

a = b = 9.41 
c = 6.71  

a = b = 9.42 
c = 6.88  

a = b = 9.40 
c = 6.86  

a = b = 9.41 
c = 6.85 

c/a  0.7311  0.71  0.73  0.73  0.72 
Volume of cell (Å3)  529.09  V = 514.62  V = 528.67  V = 524.74  V = 525.88  
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untreated wastewater or weak effluent systems [23]. Nearly, 900 million 
tons of wastewater is discharged by the textile industries around the 
world [24]. Dyestuffs are the most difficult to remove from water among 
all organic molecules. Congo Red (CR) is an anionic dye with the 
chemical formula C32H22N6Na2O6S2 and the IUPAC designation 
benzidinediazo-bis-1-naphthylamine-4-sulfonic acid sodium salt [25]. 
CR isn’t completely biodegradable and has been linked to health prob-
lems such as headedness, nausea, vomiting, and diarrhea [26]. Because 
of its great attractiveness for cellulose fibers, papermaking, cosmetics, 
pharmaceutical items, and plastic, this dye is also utilized in several 
other sectors, including the textile industry. These dyes, on the other 
hand, can’t be removed from wastewater since they’re water-soluble 
and resistant to chemicals and light. Colored wastewater discharge 
causes ecological toxicity and bioaccumulation of these dyes in marine 
species’ bodies [27–29]. The presence of dyes in the effluent also limits 
the intensity of sunlight reaching the water’s surface, which halts 
photosynthetic activity [30]. 

In this study, we synthesized a number of different types of hy-
droxyapatite, including both uncalcined (HAp) and calcined (C_HAp) 
varieties, as well as hydroxyapatite generated from eggshell (E_HAp) 
and hydroxyapatite doped with titanium (Ti-doped HAp). To get a 
comprehensive understanding of all the samples, a number of crystal-
lographic characteristics and characterization procedures were 

established. Congo red (CR) was used as a model dye, and we tested the 
photocatalytic activity of all of the synthesized samples by adjusting dye 
concentration, optimization of time, pH, and solar irradiation. 

2. Materials and methods 

2.1. Materials 

Eggshells were purchased from a nearby local restaurant of BCSIR, 
Dhaka, Bangladesh. Calcium carbonate and titanium dioxide were 
bought from E-Merck Germany and no further purification process was 
engaged before using in the reaction. Ortho-phosphoric acid and nitric 
acid were purchased from Sigma-aldrich India. 

2.2. Synthesis hydroxyapatites 

For the synthesis of chemical hydroxyapatite (C_HAp), calcium car-
bonate and ortho-phosphoric acid were chosen as the raw sources of 
calcium and phosphate, respectively. The C_HAp was synthesized 
following the Ca/P ratio of 1.67 and the details procedure are reported 
elsewhere [31,32]. Hydroxyapatite was also synthesized from eggshells 
as the source of calcium and followed a similar method as C_HAp. Before 
calcination, the raw hydroxyapatite was mentioned as Raw-HAp, and 
after calcination at 900 ◦C for 30 min, the sample was marked as E_HAp. 
A prefixed amount of titanium dioxide was dissolved in nitric acid and 
the solution was added with the orthophosphoric acid for the prepara-
tion of 0.63 %Ti-doped hydroxyapatite (Ti-HAp). The reactions which 
are associated with the synthesis process are presented in equations 1–3. 

TiO2 + HNO3→Ti − solution (1)   

10CaCO3 + 6H3PO4 → Ca10(PO4)6(OH)2                                            (2)  

(10-2x)CaCO3 + x Ti-solution + 6H3PO4 → Ca10-2xTix(PO4)6(OH)2 [x =
0.63]                                                                                              (3)  

Table 2 
Different calculated crystallographic parameters of synthesized samples.  

Parameters HAp C_HAp E_HAp Ti doped 
HAp 

Crystallite size, nm 9.28 56.96 16.56 5.58 
HAp percentage (%) 100 100 100 100 
β-TCP percentage (%) 0 0 0 0 
Volume fraction of β-TCP 0 0 0 0 
Degree of crystallinity 0.0196 4.5345 0.1106 0.0042 
Dislocation density, (1015 lines/ m2) 11.66 0.31 3.64 32.09 
Microstrain, ε 0.78 0.13 0.42 1.29 
Crystallinity index, CI 0.4352 0.1563 0.2937 0.2047 
Specific surface area, S= (6*1000)/ 

(density*crystallite size) m2/g 
205 33 115 324  

Fig. 2. Estimation of crystallite size using Sahadat-Scherrer model for (A) Raw HAp, (B) E_HAp, (C) C_HAp, and (D) Ti-doped HAp.  
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2.3. X-ray diffraction (XRD) 

The phase characterization of the produced powdered samples was 
carried out on a Rigaku SE XRD machine with a ceramic copper tube (Cu 
Kα, λ = 1.54060 Å) implanted as the radiation source. The data were 

recorded from 2θ = 5 to 70◦ with steps of 0.01 and the temperature was 
kept between 19–––20 ◦C. The machine’s voltage and current stayed at 
40 kV and 30 mA, respectively. Before the sample was tested, the ma-
chine was set up with standard silicon. The gathered information was 
compared to the standard ICDD file (card no. 01–074-0566). 

Fig. 3. Calculation of crystallite size from Linear Straight-line model for (A) Raw HAp, (B) E_HAp, (C) C_HAp, and (D) Ti-doped HAp.  

Fig. 4. Measurement of crystallite size using XRD data following Monshi–Scherrer method for (A) Raw HAp, and (B) E_HAp, (C) C_HAp, and (D) Ti-doped HAp.  
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2.4. Catalytic activity 

The catalytic activity of the synthesized samples was investigated 
using a halogen lamp (SEN TAI JM-500) of 500 W attached to a water 
bath. The experiment was performed maintaining a light-to-sample 
distance of 14 cm. The sample conditions were fixed at 20 ppm con-
centration, 50 mL volume, 25 ◦C temperature, neutral pH, 180 min light 
interaction time, and any change from these conditions were mentioned 
in the respective section. The photo-degradation percentage and pho-
todegradation capacity were computed by engaging equations 4, and 5. 
In equation 4, the Dp, Co, and Ct represent the degradation percentage, 
initial dye concentration, and concentration at time t, respectively. 
Whereas, in equation 5, the degradation capacity, weight of the sample, 
and volume of the dye solution were indicated by qe, w, and V, 
respectively. 

Degradation percentage, Dp =
Co − Ct

Co
× 100 (4)  

Degradation capacity, qe =
Co − Ct

W
× V (5)  

3. Results and discussion 

3.1. Crytallographic analysis 

The X-ray diffraction patterns of synthesized samples are shown in 
Fig. 1, where cps is on the Y-axis and 2-theta (degree) is on the X-axis. 
The synthesized products were compared with the standard database 
(card no.: # 01-074-0566). In this case, the crystallographic investiga-
tion was performed by calculating the Crystallite size, Lattice parameter 
equation, Crystallinity index, Degree of Crystallinity, Microstrain, Vol-
ume fraction of β-TCP, Percentage of HAp, Percentage of β-TCP, Dislo-
cation density, Volume of cell were calculated using eqn (6)-(15) and the 

details of these equation are discussed elsewhere [33]. 

Crystallite size, Dc =
Kλ

βCosθ
(6)  

Lattice parameter equation, (
1
dhkl

)
2
=

4
3
(
h2 + hk + k2

a2 )+
l2

c2 (7)  

Crystallinity index, CIXRD =
∑H(202) + H(300) + H(112)

H(121)
(8)  

Degree of Crystallinity, XC = (
Ka

β
)

3
= (

0.24
β

)
3 (9)  

Microstrain, ε =
β

4tanθ
(10)  

Volume fraction of β − TCP,XB =
PWa

1 + (P − 1)Wa
(11)  

Percentage of HAp =
IHA(121)

IHA(211) + Iβ− TCP(0210)
(12)  

Percentage of β − TCP =
Iβ− TCP(0210)

IHA(211) + Iβ− TCP(0210)
(13)  

Dislocation density, δ =
1

(Dc)
2 (14)  

Volume of cell, V = a2csin60 (15)  

The definitions of the equations’ symbols are as follows: The full width 
at half maximum (FWHM) in radians = β, the degree of diffraction angle 
= θ, the crystallite size = Dc, the shape factor is equal to Scherrer’s 
constant, K = 0.94; Crystallographic lattice parameters are shown as a, 

Fig. 5. Calculation of crystallite size using XRD data from Uniform Stress Deformation Model for (A) Raw HAp, (B) E_HAp, (C) C_HAp, and (D) Ti-doped HAp.  
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b, and c; planes of the unit cell are shown as h, k, and l (in eqn (2)); peak 
height of the (hkl) plane = H(hkl); Ka is a constant and the value for 
maximum HAp is 0.24; intensity of the β-TCP at (0210) plane = Iβ-TCP 

(0210) and for HAp = IHAp(0210); combined intensity of the HAp (121) 
reflection and the β-TCP (0210) reflection = P = 2.275; the percentage 
of β-TCP in eqn (7) = Wa and cell volume = V. Tables 1 and 2 contain a 
list of the calculated values. 

3.2. Estimation of crystallite size 

3.2.1. Sahadat-Scherrer model 
The size of materials is widely considered for the application as a 

catalyst and also for other applications. The crystallite sizes of synthe-
sized hydroxyapatites were evaluated by engaging Sahadat-Scherrer 
model as for this case the crystallographic planes were more than 
three. Equation 16 represents the mathematical expression of the 
Sahadat-Scherrer model and the details can be found elsewhere [34,35]. 
To build the graph from this model, cosθ and 1/FWHM were plotted on 
the y-axis and x-axis respectively, and a straight line was built. Then, a 
second straight line was built by fixing the origin and a straight line was 
formed passing the origin. By comparing the formed equation with the 
standard formula of a straight line and equating slope of the equation 11 
and the standard, the crystallite sizes were computed. Fig. 2 visualizes 
the Sahadat-Scherrer model for (A) Raw HAp, (B) E_HAp, (C) C_HAp, 
and (D) Ti-doped HAp. The crystallite size calculated from this model 
was inscribed inside the figure. 

Sahadat − Scherrer model, cosθ =
Kλ
DS− S

×
1

FWHM
(16)  

The crystallite size was lower in the case of uncalcined raw HAp, and 
increased due to the calcination. 

3.2.2. Linear straight-line model 
To evaluate the crystallite size the Linear straight-line model was 

also used which was built by reforming the Scherrer equation. Equation 
14 represents the Linear straight-line model where the symbols carried 
the conventional significance, and the details of the equation were 
described elsewhere [33,36]. 

Linear Straight − line model, cosθ =
Kλ
Dc

×
1
β
=

Kλ
DL

×
1
β

(17)  

To build the graph from this model, cosθ and 1/β were plotted on the y- 
axis and x-axis respectively, and a straight line was built. By equating the 
built equation with the standard straight-line equation, the crystallite 
size was estimated and inscribed in the respective figure. Fig. 3 illus-
trates the Linear Straight-line model for (A) Raw HAp, (B) E_HAp, (C) 
C_HAp, and (D) Ti-doped HAp. The crystallite size computed from this 
model was too large to accept, thus this model was invalid for the 
investigating samples. 

3.2.3. Monshi–Scherrer’s method 
Logarithm was taken on both side of the Scherrer equation and a new 

equation was formed which is widely familiar as the Monshi-Scherrer 
model. The mathematical expression of the Monshi-Scherrer model is 
shown in equation 16 and the details were published in a number of 
literatures [37,38]. 

Monshi − Scherrer method, lnβ = ln
1

cosθ
+ ln

Kλ
DM

(18)  

Fig. 4 illustrates the Monshi–Scherrer method for (A) Raw HAp, and (B) 
E_HAp, (C) C_HAp, and (D) Ti-doped HAp. The inscribed crystallite size 
was within 100 nm and the crystallite sizes were higher when calcined at 

Fig. 6. Measurement of crystallite size using XRD data following Uniform Deformation Model for (A) Raw HAp, (B) E_HAp, (C) C_HAp, and (D) Ti-doped HAp.  
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high temperature. 

3.2.4. Williamson–Hall plot 
Considering the intrinsic strain in the crystals, the crystallite size was 

calculated from the Williamson-Hall plot using XRD data. The Stress 
deformation model, Uniform deformation model, and Energy 

deformation model are mathematically expressed in equations 19, 20, 
and 21, respectively. The details of these models can be found elsewhere 
[39–41]. 

The mathematical expression of the Uniform Stress Deformation 
Model (USDM) is: 

βtotalcosθ =
KBλ
DW− H

+ 4
σ

Ehkl
sinθ (19) 

Fig. 7. Computation of crystallite size using XRD data using Uniform Deformation Energy Density Model for (A) Raw HAp, (B) E_HAp, (C) C_HAp, and (D) Ti- 
doped HAp. 

Fig. 8. Effect of initial concentrations of dye at a fixed time of 120 min and 0.1 
g catalyst dose to estimate removal percentage and removal capacity for 
different types of synthesized hydroxyapatite. 

Fig. 9. Removal percentage and removal capacity of Congo Red at various 
exposure times for a fixed 0.1 g of catalyst dose,10 ppm of dye concentration, 
and 120 min of time. 
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The equation of Uniform Deformation Model (UDM) is: 

βtotalcosθ =
KBλ
DW − H

+ 4εsinθ (20)  

The Uniform Deformation Energy Density Model (UDEDM) can be pre-
sented as: 

βtotalcosθ =
KBλ
DW − H

+ 4(
2u
Ehkl

)
1/2 (21)  

Figs. 5–7 illustrated the Uniform Stress Deformation Model, Uniform 
Deformation Model, and Uniform Deformation Energy Density Model, 
tandemly for (A) Raw HAp, and (B) E_HAp, (C) C_HAp, and (D) Ti-doped 
HAp. In all the cases the crystallite sizes were within 100 nm and the size 
of crystals increased with the sintering temperature. The addition of 
titanium oxide also increased the crystallite size. The intrinsic strain was 
also calculated for the synthesized sample and inscribed along with the 
crystallite size in the respective figure. 

3.3. Exploration of photocatalytic competency 

3.3.1. Variation in dye concentration 
The photocatalytic activity of the prepared samples was determined 

by using a range of dye concentrations (5–60 ppm) with a constant 
catalyst dose (0.1 g) and exposure time (120 min) (shown in Fig. 8). At 
low dye concentrations, such as 5, 10, 15, and 20 ppm, all of the samples 
performed admirably in terms of percentage and capacity for removing 
the dye. The eggshell-based adsorbent (E_HAp) proved particularly 
effective, removing 98 % of the dye at 5 ppm and 95 % at 15 ppm. A 
portion of the light may have been absorbed by the dye molecules when 
the reaction took place at a high concentration, which would have 
reduced the catalyst’s photocatalytic activity. With the increased dye 
concentration, these samples had low dye removal efficiencies, except 
uncalcined HAp, which had the largest surface area compared to the 
calcined samples, resulting in the highest photocatalytic activity. At 40 
and 60 ppm, uncalcined HAp had dye removal percentages of 91.4 %, 
and 84.3 %, and removal capacities of 18.3 mg/g, and 25.3 mg/g 
respectively. 

3.3.2. Time optimization 
In any degradation process, reaction time is an important factor. To 

optimize time, the amount of catalyst and concentration of dye used for 
degradation are crucial factors. It took less time to achieve efficient 
removal % and capacity values when a greater dose of catalyst was 
applied. However, as the catalyst concentration increases and the par-
ticles combine, the specific surface area is expected to decrease, result-
ing in decreased photocatalytic activity. An excess of suspended catalyst 
particles would obstruct the passage of UV light or sunlight, increasing 
light scattering and lowering photocatalytic efficacy [42]. However, at 
high dye concentrations, it takes longer to reveal the greater photo-
degradation rate, and this does not always occur because some light is 
absorbed by the dye molecules. According to Fig. 9, the rate of dye 
photodegradation rose considerably with increased exposure time. Yet, 
the photodegradation of the dye was almost identical at the longest 
times of 120 and 150 min. To take everything into account, 0.1 g of 
photocatalyst dose, 10 ppm of dye concentration, and 120 min were 
chosen for further experimental investigation. 

3.3.3. pH variation 
At a fixed catalyst dose of 0.1 g and an exposure time of 120 min, the 

pH, which ranges from 5 to 11, had a significant impact on all of the 
samples. It can be seen from Fig. 10 that all of the samples depicted 
outstanding degradation rates at low pH. This occurred due to the 

Fig. 10. Effect of pH variation on the removal percentage and removal capacity 
of Congo red dye for 0.1 g catalyst dose and an exposure time of 120 min. 

Fig. 11. Photodegradation of Congo red under the sunlight irradiation for a catalyst dose of 0.1 g at a dye concentration of 10 ppm, with a 120-minute exposure time.  
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Fig. 12. Relation among crystallite size of synthesized hydroxyapatite, degradation percentage and degradation capacity for the degradation of Congo Red dye.  

Fig. 13. Relation among dislocation density of synthesized hydroxyapatite, degradation percentage and degradation capacity for the degradation of Congo Red dye.  
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anionic Congo red dye reacting with the amphoteric hydroxyapatite. 
Given that Congo red is an anionic dye with negatively charged sulfonic 
groups, it stands to reason that attractive forces would develop between 

the dye substrate and the hydroxyapatite surface at low pH, where the 
greater number of H + ions on the hydroxyapatite surface would attract 
the negatively charged dye molecules, leading to high adsorption in an 

Fig. 14. Relation among microstrain of synthesized hydroxyapatite, degradation percentage and degradation capacity for the degradation of Congo Red dye.  

Fig. 15. Relation among crystallinity index of synthesized hydroxyapatite, degradation percentage and degradation capacity for the degradation of Congo Red dye.  
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acidic pH (5). The adsorption and degradation rates decrease as the pH 
rises because more and more OH ions are deposited on the hydroxyap-
atite surface, creating repulsive forces between the anionic Congo red 
and negatively charged hydroxyapatite surfaces because both surfaces 
have the same charge [43–45]. However, E HAp demonstrated excellent 
results at pH 11, which is approximately 95 % removal percentage. This 
may have occurred as a result of its more rounded shape in a highly 
alkaline medium [46]. 

3.3.4. The response of photocatalyst under sunlight irradiation 
Investigating how quickly the samples degraded in the presence of 

sunlight revealed unexpectedly outstanding results in comparison to 
those obtained using artificial visible light. The experiment was run 
based on the dye’s removal percentage and removal capacity at a fixed 
catalyst dose of 0.1 g at a dye concentration of 10 ppm, with a 120-min-
ute exposure time under sunlight (Fig. 11). C_HAp and E_HAp exceeded 
the other samples with removal percentages of 99 % and 96 %, as well as 
removal capacities of 4.95 mg/g and 4.85 mg/g, respectively. Even 
though solar radiation makes the degradation rate and capacity swing 
up, a 500-watt artificial light was used for the experiment because the 
intensity of sunlight changes depending on different factors. This makes 
it hard to estimate the photonic efficiency of products that have been 
synthesized. Furthermore, it is not practicable from an industrial aspect 
for industrial wastewater treatment without continuous light at all times 
of day and night. 

3.3.5. Relation among the crystallographic parameters 
Lower crystallite size was computed for the uncalcined HAp from the 

Scherrer equation as well as from all the model equations. However, the 
highest crystallite size was noticed for either C_HAp or E_HAp. The 
maximum degradation (~99 %) and capacity (4.95 mg/g) were 
computed for C_HAp but the crystallite size was not minimum. Fig. 12 
represents the illustration of the crystallite size, degradation percentage, 
and degradation capacity of the synthesized samples. It can be predicted 

from the relationship that the photocatalytic activity of the Congo Red 
dye was not governed by the crystallite size of the catalyst. And, the 
specific surface area was also minimum for the calcined HAp (shown in 
Table 1) thus the surface area was not also affecting the photocatalytic 
activity. 

Dislocation is the imperfection in crystals and for crystalline material 
it is undesirable. The dislocation may be different types such as volume 
dislocation, area dislocation and line dislocation. In this case only line 
dislocation was computed from the equation and a relationship is 
visualized in Fig. 13. The minimum dislocation was noticed for C_HAp 
which was also responsible for the maximum percentage of Congo red 
dye degradation (and degradation capacity) by photocatalysis. On the 
other hand, maximum dislocation and minimum degradation percent-
age (and degradation capacity) were computed for Ti-HAP. Thus, 
imperfection in line with dislocation affected the photocatalytic activity 
of the synthesized sample. 

Microstrain also known as a local strain is normally generated by the 
distortion of lattice parameters and deviates from the standard crystals. 
The microstrain also influenced the photocatalytic activity of the syn-
thesized products and the relationship among the microstrain, degra-
dation percentage, and degradation capacity is pictured in Fig. 14. 
Minimum microstrain (0.13) was calculated for the C_HAp and the 
maximum photo-catalytic activity was also noticed for the same sample. 
The maximum microstrain lowered the degradation capacity for the Ti- 
HAp. 

The dependency of degradation percentage, and degradation ca-
pacity on the crystallinity index is illustrated in Fig. 15. The crystallinity 
index was estimated from the three strong peaks which was mathe-
matically presented in Equation 3. When the crystallinity index is min-
imum, the degradation percentage and degradation capacity were 
maximum which was obtained for the C_HAp. And, higher CI was 
responsible for the lower photo-catalytic activity. 

The degree of crystallinity is another important crystallographic 
parameter that indicates the hardness, stiffness, and heat resistance of 

Fig. 16. Relation among degree of crystallinity of synthesized hydroxyapatite, degradation percentage and degradation capacity for the degradation of Congo 
Red dye. 
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any crystalline materials [32]. The effect of the degree of crystallinity on 
the degradation capacity and degradation percentage is shown in 
Fig. 16. It was noticed that the higher degree of crystallinity was 
responsible for the highest degradation percentage and degradation 
capacity. The C_HAp presented the highest degree of crystallinity (4.53) 
and the highest degradation percentage of Congo-red dye. The photo-
catalytic degradation of the Congo red dye depended on the degree of 
crystallinity instead of other conventionally reported parameters such as 
crystallite size and/or specific surface area and other parameters. 

The reaction mechanism of Congo Red (CR) dye degradation can be 
represented as presented in equations 20–23, and a similar type of re-
action mechanism has been reported elsewhere [31]. 

HAp
[
Ca10(PO4)6(OH)2

]
→

hϑfromlight

Ca10(PO4)6(OH)2 + h+ + e− (20)  

Ca8.74Ti0.63(PO4)6(OH)2 ̅→
hϑ Ca8.74Ti0.63(PO4)6(OH)2 + e− + h+ (21)  

e− + h+ +H2O→•O2
− +OH− + •O2

. +H+ +•OH− (22)  

•O2
− +OH− + •O2

. +H+ +•OH− +e− + h+ +CR→Intermediate→CO2 +H2O
(23)  

4. Conclusion 

Four types of hydroxyapatites were synthesized successfully and 
their crystallographic characterization from XRD data was performed. 
Nano-crystallite size was justified using a number of model equations. 
Neither the crystallite size nor the specific surface area governed the 
photocatalytic activity of Congo Red dye for all the synthesized samples. 
Other crystallographic parameters such as microstrain, dislocation 
density, and crystallinity index could not influence the photocatalytic 
activity even certain percentage of Ti doping failed to enhance the ac-
tivity. In this case, the degree of crystallinity governed the catalytic 
activity. From this research, it is suggested that in-depth crystallo-
graphic analysis should be performed for a better understanding of the 
governing parameter of the catalyst. The photo-catalytic activity of pure 
and doped hydroxyapatites showed variation due to the change in dye 
concentration, catalyst dose, pH, light source, time of interaction, etc. 
The chemically synthesized hydroxyapatite presented a higher degra-
dation percentage and degradation capacity for the textile dye (Congo 
Red). Thus variation in crystallographic parameters can be a good tool 
for the degradation of different types of environmental pollutants. 
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