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Region of interest (ROI) selection 
using vision transformer 
for automatic analysis using whole 
slide images
Md Shakhawat Hossain  1,2*, Galib Muhammad Shahriar 2, M. M. Mahbubul Syeed 1,2,4, 
Mohammad Faisal Uddin 1,2,4, Mahady Hasan 1,2,4, Shingla Shivam 3,4 & Suresh Advani 3,4

Selecting regions of interest (ROI) is a common step in medical image analysis across all imaging 
modalities. An ROI is a subset of an image appropriate for the intended analysis and identified 
manually by experts. In modern pathology, the analysis involves processing multidimensional 
and high resolution whole slide image (WSI) tiles automatically with an overwhelming quantity of 
structural and functional information. Despite recent improvements in computing capacity, analyzing 
such a plethora of data is challenging but vital to accurate analysis. Automatic ROI detection can 
significantly reduce the number of pixels to be processed, speed the analysis, improve accuracy and 
reduce dependency on pathologists. In this paper, we present an ROI detection method for WSI and 
demonstrated it for human epidermal growth factor receptor 2 (HER2) grading for breast cancer 
patients. Existing HER2 grading relies on manual ROI selection, which is tedious, time-consuming 
and suffers from inter-observer and intra-observer variability. This study found that the HER2 grade 
changes with ROI selection. We proposed an ROI detection method using Vision Transformer and 
investigated the role of image magnification for ROI detection. This method yielded an accuracy of 
99% using 20 × WSI and 97% using 10 × WSI for the ROI detection. In the demonstration, the proposed 
method increased the diagnostic agreement to 99.3% with the clinical scores and reduced the time to 
15 seconds for automated HER2 grading.

A whole slide image (WSI) is a digital image of a pathological specimen generated by a WSI scanner and used 
in modern pathology for analysis and diagnosis. The WSI scanner converts the entire tissue specimen into a 
series of image blocks which are then combined to create the WSI. The WSI employs a multi-layer pyramid 
model, as shown in Fig. 1. The top layer of the pyramid represents the lowest resolution, such as 1 × magnifica-
tion, which increases with its depth. The bottom layer contains the highest magnification, which provides the 
highest resolution image. High magnification images such as 20 ×, 40 × or 60 × contain finer details, useful for 
observing tissue structures and detecting genes, proteins and other biomarkers. However, the processing time 
increases as the amount of information increases with magnification. Lower magnification images are smaller 
in dimensions, thus, faster to process. Low magnification images are typically used for analysis that does not 
require fine details, such as detecting tissue area, abnormalities and artifacts1. The WSI can be stored for years 
without losing quality, shared over a network in minutes for primary diagnosis and secondary consultation and 
analyzed using computerized methods. The US Food and Drug Administration (FDA) recently approved Philips 
Ultra-fast WSI scanner for primary diagnosis2. As a result, many laboratories are incorporating WSI scanners 
into their workflow and this adoption of WSI for clinical purposes is arguably one of the most revolutionary 
technologies introduced to pathology that has the potential to improve the analysis and diagnosis significantly. 
Several studies that found a high correlation between the WSI-based and glass slide-based diagnosis reported the 
benefits of incorporating the WSI system into their work3–5. NHS Greater Glasgow and Clyde, the largest health 
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board in Scotland and the United Kingdom, has recently begun the complete digitalization of their pathology 
workflow using the WSI system. In the United States, the largest private cancer center in the world, Memorial 
Sloan Kettering Cancer Center, has started the adoption process5.

The transformation from the microscope to the WSI has enabled the use of computerized algorithms for 
analysis, overcoming human limitations and minimizing diagnostic errors. This transformation has facilitated 
the development of artificial intelligence (AI) assisted diagnosis systems, a subcategory of computerized diagnosis 
systems for morphological and molecular image analysis. The morphological image analysis involves the assess-
ment of tissue architecture and morphology, such as nuclei shape, size and distortion to identify the primary 
condition of a patient, such as detecting malignant or benign cancer6. For the detailed diagnosis of the patient’s 
condition, molecular analysis is performed, which requires detecting the presence of genes, proteins and other 
bio-markers such as assessing cancer grade. However, the efficacy of both types of analysis depends on how 
the algorithm handles the massive WSI data, such as 100,000 × 100,000 pixels. Processing the entire WSI pixel 
by pixel is inefficient and time-consuming as most of the tissue regions in the WSI are not relevant. Processing 
irrelevant regions could mislead the computerized algorithms; thus, efficient ROI selection reduces the com-
plexity of training the algorithms. Particularly, molecular image analysis is highly sensitive to region selection 
as different parts of the specimen show different gene or protein expressions. Fig. 2 shows how different regions 
of the same specimen show different molecular properties. Table 1 shows how the HER2 scores change with the 
region selection, although both regions were cancerous and belonged to the same patient. Therefore, it is neces-
sary to select representative ROIs suitable for the intended image analysis. ROI selection is significant in medical 
imaging for primary diagnosis, analysis, consultation and training as it is ineffective and often confusing to look 
at every area of the specimen. Moreover, on many occasions, the analysis is performed using specially stained 
specimens where tissue structures are missing which is important for identifying the relevant region for diag-
nosis. Thus, pathologists identify the ROI using the basic H &E specimen, which preserves the tissue structure 
and then copy the coordinates of ROIs to the special specimen. In digital pathology, deep learning algorithms 
are used for automated WSI analysis. However, they fail to perform consistently when trained using the entire 
slide due to diverse histological variances and inconsistencies such as tissue fold, air bubbles, tissue tear, focus 
blur and excessive color pigment deposit. Thus, machine learning researchers utilize separate methods to detect 
diagnostically irrelevant areas, which are then processed for analysis. This approach reduces the complexity of 
deep learning methods for automated analysis, resulting in improved performance in terms of speed and accu-
racy. Some rely on a semi-automated approach in which an expert manually selects the relevant regions or ROI 
for automated analysis. However, this approach is not practical and existing automated ROI detection methods 
fail to achieve sufficient accuracy and reliability. This signifies the need for a separate and reliable ROI detection 
method. Most computerized image analysis methods rely on the pathologist or an expert to select the ROIs due 
to the need for efficient and user-friendly automatic ROI detection methods for WSIs. One of the motivations for 
developing the WSI system was to digitalize pathological workflow to automate image analysis and reduce human 
intervention considering the worldwide shortage of pathologists7. User-dependent ROI selection undermines 
the goal of automated WSI analysis.

Several methods for detecting ROI from WSI have been reported. These methods can be broadly categorized 
into two groups: (1) methods that utilize image-features8–12 and (2) methods that utilize the psycho-physical 
characteristics of pathologists13,14. Image feature-based approaches take advantage of statistical or structural 

Figure 1.   Multi-layer pyramid model of WSI.
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information of tissue such as nucleus shape, texture, color distribution, local binary pattern and others. Patholo-
gists’ activities on the WSI viewer, such as zooming, panning and observation time, are used in the psycho-
physical behavioral-based approach to determine the relevance of an ROI. If an ROI was zoomed in and observed 
for a specific period, it is interpreted as diagnostically relevant. Bahlmann et al. proposed a feature-based method 
to select diagnostically relevant ROIs from H &E WSI for cancer regions detection8. A support vector machine 
(SVM) classifier was trained using selective statistical features for ROI detection. This approach depended on 
40 × images and trained on only a subset of the WSI. As a result, this method produced a large number of false 
positives when demonstrated on the entire WSI. Romo et al. utilized gray-level texture-based features in combina-
tion with color distribution but attained a precision rate of 55%9. Barker et al. achieved an accuracy of 93.1% for 
detecting relevant ROIs for brain tumor detection10. This method utilized a modified K-means clustering method 
but depended on high magnification WSI such as 20 ×. Moreover, the 20 × images were generated by down-
sampling the 40 × images, which contain a higher numerical resolution than the actual 20 × images. Therefore, it 
is difficult to generalize the performance of this method for conventional 20 × WSI. Li et al. proposed a feature-
based ROI detection method utilizing low magnification WSI for lung cancer but obtained an accuracy of only 
71%11. Nugaliyadde et al. relied on the CNN extracted features to improve the accuracy to 91%12. Some weakly 
supervised approaches, particularly based on Multiple Instance Learning (MIL), have been proposed to predict 
diagnostically significant regions without requiring pixel-level annotation15,16. Lu et al. suggested another graph-
based weakly supervised approach for diagnosis that allows the use of entire WSI-level data rather than limited 
ROIs17,18. These weakly supervised algorithms show great potential for WSI-based analysis since they require 
fewer data for training and are computationally faster. However, one major disadvantage of these approaches is 
that they do not generalize well. As a result, when the scanner profile changes, these methods occasionally fail. 
The graph-based WSI analysis had a maximum accuracy of 80%, while the MIL-based ROI recognition had an 
accuracy of 89.74%. The inclusion of irrelevant regions in the analysis could have affected performance since 
most of the regions in the WSI are not diagnostically relevant.

On the other hand, psycho-physical behavioral-based methods are more functional than feature-based meth-
ods; they tend to achieve lower accuracy. Nagarkar et al. proposed a behavioral feature-based method that 
obtained 100% overlap for only 27% images and 66-99% overlap for 33% images in the demonstration13. Mercan 
et al. proposed another method based on psycho-physical behavior, which determined the diagnostic relevancy 
of an ROI based on three behavioral features: zoom peaks, slow panning and fixation14. This method utilized 40 
× WSI to achieve an overlap of 74% with the pathologist’s ROI selection. The behavioral feature-based method 
extracts features from the view-port analysis in the WSI viewer, such as zooming pattern, observation time and 

Figure 2.   Human epidermal growth factor receptor 2 (HER2) status changes depending on the selection of 
region regardless the test methods.

Table 1.   Impact of ROI selection on the HER2 scoring.

Quantified regions HER2 score

Only region 1 5.35

Only region 2 1.58

Both region 1 & 2 4.53
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others. The values for these features were then used to infer the pathologists’ interest in ROIs. However, this 
assumption is not always correct and depends on the pathologists’ intentions. Therefore, in this paper, a more 
intuitive approach was adopted to confirm the consent of pathologists for ROI selection. Three experienced 
breast pathologists independently selected the representative ROIs for breast cancer grading. Then, ROIs that 
they had in common were considered true positives for training the proposed ROI detection method. The rest 
of the areas of the WSI were considered true negatives. Most of the existing works incorporated the consent 
of a single pathologist, which made the models biased and thus performed poorly when demonstrated on a 
heterogeneous dataset. Accuracy and detection time are other important issues. The accuracy of the existing 
methods is not satisfactory. Moreover, they rely on high magnification images such as 20 × or 40 ×, which is 
highly time-consuming, thus, not practically feasible. Another major limitation of these methods is that their 
application was demonstrated only for morphological image analysis and not for molecular analysis, which is 
more sensitive to ROI selection.

By addressing the shortcomings of current approaches, we present in this study a machine learning-based 
ROI detection method for automatic image analysis using WSI. This work incorporated the consensus of three 
expert pathologists for subjective evaluation of the method and yielded an accuracy of over 97% using 10 × 
images when tested on a heterogeneous dataset. Moreover, this method was demonstrated for an exemplary 
molecular analysis which is HER2 grading. Integrating the proposed ROI detection method with the existing 
HER2 grading system improved the system’s diagnostic agreement with the clinical HER2 scores. HER2 grading 
is performed routinely for breast cancer patients to plan their treatment and determine suitability for giving 
Trastuzumab therapy. Fluorescence in situ hybridization (FISH) and chromogenic in situ hybridization (CISH) 
are FDA-approved gene-based assays for HER2 grading. In practice, the HER2 grading process starts by select-
ing the most representative invasive cancer regions from the H &E slide, which are then copied using the image 
registration application to the serially sectioned FISH or CISH slide19. Then the selected regions are used for 
counting the HER2 and CEP17 signals from the nuclei. Finally, the HER2 to CEP17 ratio is calculated to deter-
mine the HER2 grade, which is highly sensitive to the region selection as illustrated in Fig. 2 and Table 1. Recently, 
some automated systems were proposed to estimate the grade automatically from FISH or CISH WSI, but they 
rely on pathologists to manually annotate the ROIs on H &E5,20,21. Consequently, it suffers from inter-observer 
variability, as shown in Table 2. The Mean Square Error (MSE) and the Pearson Correlation Coefficient (PCC) 
between the users were 4.30 and 0.21, accordingly in terms of HER2 score for the 12 cases. The Kappa value was 
-0.15 in terms of HER2 status. The high MSE, low PCC and negative Kappa values represented high disagree-
ment among the users. Our study found that these methods also suffer intra-observer variability. The proposed 
ROI detection method was integrated with the automated HER2 quantification method as an exemplary WSI 
analysis method to ensure the practical use of the proposed method. We have also investigated the role of WSI 
magnification and compared CNN and vision transformer models for ROI detection.

The major contributions of this study are listed as follows: (1) development of an ROI detection method for 
WSI analysis, (2) analysis of image magnification in ROI detection, (3) comparison between CNN and Vision 
transformer models for ROI detection, (4) improvement of computerized HER2 grading methods in terms of 
accuracy and time and (5) facilitating the development of a fully automated HER2 grading system using WSI.

Results
ROI detection results.  The proposed system is designed to detect diagnostically relevant ROIs for auto-
mated image analysis using WSI. The selection of ROIs is different for different image analyses. In this study, 
the proposed system was demonstrated for detecting the representative ROIs for HER2 grading of breast cancer 
patients; however, this system can be used for other image analysis applications with necessary adjustments.

The proposed ROI detection method was trained and tested to classify image blocks as representative or 
non-representative ROIs from WSI at two different magnifications, 10 × and 20 ×. Though, we recommend 10 × 
magnification considering its accuracy and speed. The method was tested on 3080 images for each magnification 

Table 2.   Inter-observer variability for automated HER2 grading due to ROI selection.

Case User 1:Automated HER2 score User 1: automated HER2 status User 2: automated HER2 score
User 2: automated HER2 
status

1 2.50 Pos 2.45 Pos

2 2.45 Pos 2.36 Pos

3 2.22 Pos 3.02 Pos

4 3.83 Pos 6.33 Pos

5 2.14 Pos 1.81 Neg

6 2.64 Pos 1.65 Neg

7 2.57 Pos 1.24 Neg

8 4.26 Pos 1.45 Neg

9 4.15 Pos 2.37 Pos

10 4.24 Pos 6.73 Pos

11 1.30 Neg 4.16 Pos

12 2.65 Pos 6.70 Pos
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which were not included in the training and validation. An ROI was considered representative or positive in this 
study if all three expert pathologists selected it as a representative ROI. ROIs chosen by less than three experts or 
none were deemed negative or non-representative. For the test dataset, the proposed method achieved an accu-
racy of 97.2% with 100% sensitivity and 94.5% specificity at 10 × magnification. In case 20 × WSI, the accuracy 
was 100% with 100% sensitivity and specificity. In addition, we demonstrated the proposed method on twelve 
entire WSIs to ensure its practical use for automated WSI analysis. These WSIs were not used for preparing 
the training or test dataset. Figure 3 shows the ROI detection results for four WSIs. Prior to ROI detection, the 
proposed method deploys artifact detection and image quality evaluation. Figue 4 shows the detailed scrutiny 
of the proposed method for one of the twelve WSI where we identified true positives, false negatives and three 
types of false positives: (1) selected by two pathologists and the proposed method, (2) selected by one pathologist 
and proposed method and (3) selected by proposed method but pathologist. In the demonstration using twelve 
WSIs, the proposed method produced only two false positives and one false negative.

Comparison between CNN and ViT models.  The CNN-based machine learning models are widely 
used in the medical image analysis task, such as detecting structures and classification tasks. However, the CNNs 
do not incorporate the position and orientation information for predictions, which are significant for some 
applications such as ROI detection, where understanding the position of a specific structure in a region is criti-
cal. Recently, the vision transformer, primarily proposed for text analysis, has gained immense popularity as an 

Figure 3.   Visualization of ROI detection result produced by proposed method where green, yellow and purple 
colored-box indicates representative, artifact-affected and poor quality ROIs.

Figure 4.   Overlap of ROIs for proposed method and pathologists.
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alternative to CNN for image-based applications. CNN processes an image pixel by pixel, whereas ViT divides 
input images into fixed-size patches to determine the significance of each patch. This approach of transformers 
has achieved state-of-the-art standard accuracy for numerous computer vision applications. Thus, in this study, 
we have investigated both approaches to detect the ROIs and compared their performances.

At first, the top candidate networks of seven CNN and ViT models were selected based on their accuracy 
on the test dataset. The procedure for identifying each model’s top candidate network is explained in Methods 
Section. Then the top candidate networks of all models were trained and validated in a 5-fold cross-validation 
experiment. The cross-fold validation experiment was conducted to ensure the robustness and generalized per-
formance of the networks and to identify the best network from the top candidate networks for the proposed 
method. Then the best networks of each model were trained and validated in a 5-fold cross-validation experi-
ment. For the 5-fold cross-validation experiment, 10,000 images, including 5000 positive and 5000 negative 
images, were randomly selected from the training and validation dataset. Then these images were assigned to 
five different groups for the cross-validation experiment. Finally, the models’ average accuracy for 5-folds was 
calculated and compared. This experiment was conducted using both 10 × and 20 × images. The ViT model 
achieved the best accuracy for both magnifications, as shown in Table 3. The accuracies of the models were lower 
using 10 × images compared to the 20 × images. However, such impact of image magnification was the least for 
the ViT model. The ViT model achieved the highest accuracy of 0.961 and 0.946 among all the models using 20 
× and 10 × images, respectively. The sum of differences between the CNN-based models and the ViT were 0.715 
and 0.490 for 10 × and 20 × images, respectively. This suggests the ViT performed substantially better on 10 × 
images than the CNN models. The accuracy of the models was illustrated using a box plot. Figure 5 shows the 
box plots for 5-fold cross-validation results for 10 × and 20 × images. The ViT had the highest median for both 
magnifications. The median is the middle quartile of the boxplot that marks the mid-point of the data, as shown 
by the dark horizontal lines in the boxplots. It indicates that half of the accuracies are greater than or equal to 
the median and half are less. The boxplots also reveal that the ViT models have a narrow spread of accuracy over 
cross-validation folds, indicating that they are more consistent than other models. Further, we estimated the area 
under the curve for the models for the cross-validation experiment, as illustrated in Figs. 6 and 7. The ViT-based 
models produced the maximum area under the curve close to one in the receiver operating characteristic plot 
with both magnifications. These results demonstrate that the ViT model is more effective for ROI detection.

Table 3.   Average validation accuracy of machine learning models in 5-fold cross validation experiments. 
Significant values are in bold.

Networks Average accuracy in 5-fold cross validation using 10 × images
Average accuracy in 5-fold cross validation using 20 × 
images

VGG16 0.866 0.938

VGG19 0.838 0.922

ResNet50 0.806 0.765

ResNet152 0.771 0.763

Xception 0.901 0.960

InceptionV3 0.859 0.940

DenseNet121 0.867 0.947

ViT 0.946 0.961

Figure 5.   Box-plot of machine learning models for 10 × and 20 × images.
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Analysis of image magnification.  This study investigated the role of image magnification in ROI detec-
tion. The WSI system utilizes a pyramid structure, allowing users to use images of different magnifications. 
Traditionally, pathologists use low magnification for surfing on the WSI and then confirm an ROI by observ-
ing it on the highest magnification, such as 20 × or 40 ×, which is time-consuming. In this study, firstly, the 
representative ROIs were selected using 40 × magnification by experts and then the machine learning models 
were trained separately using 10 × and 20 × versions of these ROIs for automatic ROI detection. The models 
trained on 10 × images were tested for ROI detection using 10 × and 20 × WSI. Similarly, models trained on 20 
× images were tested for 10 × and 20 × WSI. Table 4 compares each model’s best networks for the test dataset of 
two different magnifications. The Table shows that the ViT-based models achieved the best accuracy, sensitivity 
and specificity in all approaches. When trained and tested on 20 × images, all models outperformed their 10 × 
counterparts. However, when tested on 10 × images, the accuracy of 20 ×-trained models is much lower than 
that of 10 ×-trained models tested on 20 × images. This implies that high magnification is preferred for ROI 
detection; however, it is computationally slower, as shown in Table 5. For all the models, the ROI detection time 
was roughly lowered in half at 10 × compared to 20 × for the same WSI. The proposed method can identify the 
representative ROIs from a WSI in less than a minute, whereas manual selection takes 30 to 60 mins.

Application to HER2 grading system.  The proposed ROI detection method was demonstrated on an 
exemplary automated image analysis application which is HER2 grading using Shimaris system5. The Shimaris 
was clinically validated for in-house application at Memorial Sloan Kettering Cancer Center, USA. This system 
determines the HER2 grade of breast cancer patients from CISH WSIs. At first, the ROIs suitable for determining 
the HER2 grade are selected manually by an expert breast pathologist on the H &E specimen. Then, Shimaris 

Figure 6.   ROC for 5-fold cross validation for 10 × images.

Figure 7.   ROC for 5-fold cross validation for 20 × images.
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copies the coordinate locations of the ROIs from H &E to the CISH WSI. After that, it detects the singular 
nuclei suitable for HER2 grading from the ROIs using machine learning. Then, it detects the HER2 and CEP17 
biomarkers based on the likelihood of dye concentration. In the next stage, it counts the number of HER2 and 
CEP17 biomarkers that fall inside the detected singular nuclei. Finally, it calculates the average HER2 copy 
number per nucleus and HER2 to CEP17 ratio, which are then used to determine the HER2 grade based on the 
ASCO/CAP guideline22.

The Shimaris grading system was chosen in this study since it was designed primarily for completely auto-
mated pathological image analysis using WSI. Demonstrating the proposed method for such a system makes it 
easy to judge its effectiveness while also realizing the system’s benefit. Although Shimaris was designed for com-
plete automation, it relied on pathologists for ROI selection which compromises the goal of the system. Initially, 
this system was limited to bright-field image analysis, such as CISH and later extended to fluorescence imaging, 
such as FISH. This study reports that the performance of Shimaris varies with the ROI selection, which depends 
on the pathologist as shown in Table 2. Expecting expert pathologists always to be available for ROI selection is 
unrealistic. Consequently, the system fails when the ROI selection is not appropriate.

In this study, the proposed ROI detection method was integrated with Shimaris. Then it quantified twelve 
systematically selected cases, including ten cases for which the Shimaris failed, as listed in Table 6. The integra-
tion of the proposed method enabled Shimaris to analyze the cases accurately. The PCC between the clinical 
HER2 score and Shimaris predicted HER2 score improved to 0.993 when the ROIs for HER2 quantification were 
selected using the proposed method. The PCC between the clinical score and Shimaris were -0.041 and -0.046, 
respectively, when the first and second user provided the ROIs for quantification. The MSE between the clinical 
score and proposed ROI-detection enabled Shimaris score was 0.012. The Cohen’s Kappa value was 1, indicating 
complete agreement between clinical score and proposed ROI enabled Shimaris. Integrating the proposed method 
also improved the turn-round time for HER2 grading. The time reported earlier for Shimaris was 3 to 20 mins, 
which did not include the ROI selection time. The turn-around for selecting representative ROIs ranges from 30 
to 60 mins, which significantly increases the total grading time for Shimaris. The proposed method can detect 
representative ROIs in less than 15 s and on top of that, it reduces the number of ROIs for quantification. A test-
retest experiment was performed for the Shimaris when integrated with proposed method, as shown in Table 7. 
The PCC and MSE values between the test and retest scores were 0.998 and 0.004. The Cohen’s Kappa value was 
1 in terms of HER2 status. The low MSE, high PCC and high Cohen’s Kappa value ensured the generalized and 
consistent performance of the proposed method for selecting representative ROIs. The little variation in the scores 
was caused by the nuclei and biomarker detection method of Shimaris. Thus, it is plausible to conclude that the 
proposed method increases computerized image analysis applications’ accuracy, efficiency and dependability. It 
also eliminates the system’s reliance on pathologists, enabling it to be fully automated.

Table 4.   Accuracy (ACC), sensitivity (TPR) and specificity (TNR) of machine learning models for test dataset 
of two different magnification. Significant values are in bold.

Networks

Train: 10 ×, Test: 10 × Train: 20 ×, Test: 10 × Train: 20 ×, Test: 20 × Train: 10 ×, Test:20 ×

ACC​ TPR TNR ACC​ TPR TNR ACC​ TPR TNR ACC​ TPR TNR

VGG16 0.892 0.925 0.860 0.603 0.657 0.550 0.996 1.00 0.993 0.564 0.607 0.522

VGG19 0.844 0.883 0.804 0.487 0.498 0.475 0.979 0.998 0.961 0.592 0.659 0.524

ResNet50 0.775 0.834 0.717 0.531 0.540 0.521 0.866 0.925 0.807 0.502 0.545 0.459

ResNet152 0.769 0.802 0.737 0.500 0.540 0.459 0.854 0.889 0.820 0.503 0.546 0.460

Xception 0.847 0.896 0.799 0.535 0.605 0.465 0.990 1.000 0.981 0.767 0.868 0.666

InceptionV3 0.827 0.870 0.777 0.596 0.606 0.587 0.987 0.996 0.979 0.626 0.642 0.611

DenseNet121 0.900 0.870 0.930 0.649 0.622 0.676 0.998 1.000 0.996 0.689 0.696 0.683

ViT 0.972 1.000 0.945 0.672 0.713 0.630 1.000 1.000 1.000 0.872 0.937 0.807

Table 5.   Time-requirement of machine learning models for two different magnifications of the same WSI. 
Significant values are in bold.

Networks Quantified area ( µm2) Average time for 10 × (s) Average time for 20 × (s)

VGG16 23 k 8.50 ± 0.05 15.24 ± 0.07

VGG19 23 k 8.45 ± 0.02 15.31 ± 0.04

ResNet50 23 k 8.66 ± 0.00 15.69 ± 0.05

ResNet152 23 k 9.35 ± 0.04 19.22 ± 0.08

Xception 23 k 8.89 ± 0.01 15.62 ± 0.02

InceptionV3 23 k 9.05 ± 0.04 16.25 ± 0.16

DenseNet121 23 k 9.27 ± 0.07 17.25 ± 1.10

ViT 23 k 10.33 ± 0.12 22.85 ± 1.12
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Discussion
The overlap between pathologists-selected ROIs and computerized-method processed ROIs is strongly related 
to the accuracy of automatic image analysis and diagnosis of the computerized method. As a result, medical 
imaging researchers focus on detecting accurate ROI to design automated image analysis systems. In this paper, 
we proposed an ROI detection method using a vision transformer for automated image analysis using WSI. This 
method was trained and tested to detect representative ROIs for HER2 grading. The experimental results dem-
onstrated that the proposed method could detect ROIs from WSIs for HER2 grading with acceptable accuracy 
and precision, even when tested on cases from a different cohort than the one used for training and validation. 
Whereas some weakly supervised methods avoided pixel-level annotation in favor of analyzing the entire WSI 
for diagnosis, the proposed method was trained using fine-grained annotation to predict representative ROIs 
for diagnosis, resulting in higher diagnostic accuracy and consistency.

An essential part of the study was the analysis of image magnification for ROI detection. The proposed 
method yielded higher accuracy when used with 20 × (1.00) images than with 10 × (0.972), but for 10 × images, 
the detection time was significantly low. Time is an essential criterion for image analysis systems and we recom-
mend using 10 × magnification in the proposed method. This study found that the patch-wise self-attention 
mechanism of the vision transformer is highly effective for ROI detection than to pixel-wise feature estimation 
of CNN. It was also observed that gradually reducing neurons to fit output neurons improves the accuracy of 
ViT. In the future, the performance of the vision transformer-based approach can be investigated for other 
related image analysis applications. The proposed method was tested to use with the HER2 grading system. The 
proposed method improved the correlation between automated grading and clinical scores, lowered intra- and 
inter-observer variability and speeded up the analysis.

One major challenge of this study was dealing with WSI color variation. For some WSIs, the hematoxylin 
stain color was very strong compared to the other WSIs. Non-cancerous regions that are strongly stained appear 
malignant in such circumstances. This study has a limitation. The proposed method was trained and tested to 
detect ROIs appropriate for HER2 grading. However, it is necessary to train and test this method for other image 

Table 6.   The proposed ROI selection method improves the correlation between computerized HER2 grades 
and clinical HER2 grades.

Case
Clinical HER2 
score

Clinical HER2 
status

User 1: automated 
HER2 score w/o 
proposed method

User 1: automated 
HER2 status w/o 
proposed method

User 2: automated 
HER2 score w/o 
proposed method

User 2: automated 
HER2 status w/o 
proposed method

Automated 
HER2 score with 
proposed method

Automated 
HER2 status with 
proposed method

1 0.97 Neg 2.5 Pos 2.45 Pos 1.09 Neg

2 5.50 Pos 2.45 Pos 2.36 Pos 5.20 Pos

3 2.12 Pos 2.22 Pos 3.02 Pos 2.22 Pos

4 2.37 Pos 3.83 Pos 6.33 Pos 2.40 Pos

5 2.17 Pos 2.14 Pos 1.81 Neg 2.14 Pos

6 1.65 Neg 2.64 Pos 1.75 Neg 1.62 Neg

7 1.27 Neg 2.57 Pos 1.24 Neg 1.29 Neg

8 1.45 Neg 4.26 Pos 1.67 Neg 1.56 Neg

9 2.57 Pos 4.15 Pos 2.37 Pos 2.63 Pos

10 1.25 Neg 4.24 Pos 6.73 Pos 1.20 Neg

11 1.20 Neg 1.30 Neg 4.16 Pos 1.17 Neg

12 2.36 Pos 2.65 Pos 6.70 Pos 2.46 Pos

Table 7.   Comparison between test and retest scores.

Case Test HER2 score Test HER2 status Retest HER2 score Retest HER2 status

1 1.09 Neg 1.00 Neg

2 5.20 Pos 5.15 Pos

3 2.22 Pos 2.22 Pos

4 2.40 Neg 2.49 Neg

5 2.14 Neg 2.10 Neg

6 1.62 Neg 1.56 Neg

7 1.29 Neg 1.20 Neg

8 1.56 Neg 1.47 Neg

9 2.63 Pos 2.70 Pos

10 1.20 Neg 1.13 Neg

11 1.17 Neg 1.09 Neg

12 2.46 Pos 2.52 Pos
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analysis applications. The analysis of image magnification was limited to 10 × and 20 ×. It can be further extended 
to use 5 × or lower magnification.

One interesting aspect of our work is that the method was demonstrated for molecular image analysis, which 
is highly sensitive to the ROI selection. Thus, it can be expected that the system will be adaptable for morphologi-
cal and other molecular image analysis applications. This work is unique in that it incorporated the consensus 
of multiple pathologists to train and test the model. Independent testing of the method on heterogeneous data 
ensured that the technique is accurate and robust. Our automated ROI detection method will facilitate the 
development of a fully automated pathological image analysis pipeline.

Methods
Ethics statement.  This study was approved under the Institutional Review Board protocol No.02-02-2023 
with the Independent University, Bangladesh and all experiments were carried out following approved guide-
lines. This research used de-identified human data. The IRB committee of Independent University, Bangladesh, 
waived the need for informed consent for this study as it is impracticable to obtain consent and the research does 
not infringe the principle of self-determination. Moreover, the research provides significant clinical relevance.

Data collection and ground truth generation.  Three expert breast pathologists annotated 120 H &E 
WSIs independently to select the most representative ROIs for HER2 grading. Two different institutions pre-
pared these WSIs, which were digitized by two different scanners. The Yale Pathology electronic database (Yale 
HER2 cohort) provided 100 of the 120 WSIs, which included 50 HER2 negative and 50 HER2 positive cases. 
Another 20 WSIs were collected from the Cancer Genome Atlas (TCGA HER2 cohort), which included 10 
HER2 negative and 10 HER2 positive cases. Yale cohort WSIs were produced using Vectra Polaris by Perkin-
Elmer scanner using bright field whole slides scanning at 20 × magnification. The TCGA cohort WSIs were 
generated using an Aperio scanner at 40 × magnification. Following the annotation, the common ROIs between 
the three pathologists were selected as the representative ROIs for training the machine learning models for 
automated ROI detection. The remaining ROIs were used as non-representative ROIs for training the models. 
The ROIs were then exported to png image files at 10 × and 20 × magnifications.

A dataset of 15392 images (224 × 224 pixels) of 20 × magnification was prepared, which included 7696 
positives and 7696 negatives for representative ROI detection. Approximately 60% of the dataset was used for 
training, 20% for validation and 20% to test the models. The training dataset included 4616 positive and 4616 
negative images. The validation dataset contained 1540 positive and 1540 negative images. The test dataset also 
contained 1540 positive and 1540 negative images, which were generated from WSIs that were not included in 
the training and validation. Another dataset of 15392 images at 10 × magnification was prepared with the same 
image distribution for training, validation and testing. The 15392 images at 10 × cover a significantly larger area, 
but we utilize the same number of images at 10 × and 20 × to facilitate model comparison.

WSI quality evaluation.  The WSI quality is occasionally dull, which could be caused by various factors 
related to the WSI scanner or glass slide specimen. The most typical problems with automated WSI analysis 
are focus errors and tissue artifacts. Therefore, out-of-focus and artifact-affected regions were detected and 
eliminated while preparing the dataset. Consequently, the proposed ROI detection method incorporates quality 
evaluation and artifact detection methods to ensure the system’s resiliency. The proposed method relied on the 
reference-less quality evaluation method proposed previously by Hossain et al.23 to eliminate dull and artifact-
affected regions.

Model training, evaluation and selection.  For ROI detection, we trained seven popular CNN and 
vision transfer models and compared their performance. The CNN models include VGG architecture-based 
networks24 VGG16 and VGG19, deep residual learning-based networks25 ResNet50 and ResNet152, depthwise 
separable convolutions based network26 Xception, Inception module based network27 InceptionV3 and densely 
connected layer based network28 DenseNet121. These models were trained individually to detect the representa-
tive ROI from H &E WSI for HER2 grading. The CNN models were trained using a transfer learning technique 
in which the convolution base, which works as the feature extractor, was frozen. Only the top fully-connected 
(FC) layers responsible for determining the class based on the extracted features were optimized for our training 
images. In training, the convolution base utilized the pre-trained weights from the ImageNet data29 to provide 
the bottleneck features for the given images as the last activation map before FC layers. Then, the FC layers, 
which contained three dense layers, including a dropout at the top, were trained using the extracted features of 
our training images. During the training, different combinations of epochs, batch sizes, learning rates, optimiz-
ers and loss functions were explored to find the best network for each model, as shown in Table 8. Each CNN 
model generated 1152 candidate networks (3 Epochs × 4 Batch sizes × 4 Optimizers × 2 Loss functions × 3 
Learning rates × 4 Dropouts). The top candidate network of each model was then selected based on their accu-
racy on test data using an exhaustive grid search which resulted in 7 networks, one for each CNN model. During 
the training on the fly data augmentation was also applied by flipping, rotating and zooming the images. Table 4 
shows the accuracy of the top candidate networks for all models.

The convolution operation of CNN models focuses on local information bounded to a small neighborhood 
of an image. This approach is not always effective, especially for ROI detection, which requires understanding 
the image’s local and global context. Visual transformers use self-attention techniques that draw information 
from the entire image, like a global operation30. This enables the ViT to understand distant semantic relevance 
in an image efficiently. ViT has recently gained immense popularity as an alternative to CNN in computer 
vision. Compared to CNN, ViT shows a generally weaker inductive bias resulting in increased reliance on model 
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regularization or data augmentation when training on smaller datasets. The ViT divides the image into fixed-size 
patches, which are then flattened and combined with position embeddings to a sequence fed to the transformer 
encoder. The transformer encoder consists of multiple blocks, each containing normalization, MHSA and multi-
layer perceptron layers (MLP). The output of the transformer encoder is fed to a classification head that consists 
of MLP to map the encoded feature vector to output classes. In this study, the performance of the ViT-based 
models30 was evaluated for ROI detection and then compared with the CNN-based models. We utilized a ViT 
model pre-trained on the ImageNet dataset and then used our training dataset to train the model in two different 
approaches: (1) fine-tuned the multi-head self-attention layers (MHSA) of transformer and (2) fine-tuned the 
MHSA layers and the customized the classification (MCTN) head, as illustrated in Fig. 8.

In the first approach, the MHSA layers were fine-tuned using our dataset. MHSA allows the network to control 
the mixing of information between parts of an input sequence, leading to a better representation to increase the 
model’s performance. The MHSA layers have fewer parameters than the feed-forward network (FFN) layers. Thus, 
fine-tuning only the MHSA layers without the parameters-heavy FFN layers speed the training time and saves 
memory. This design was motivated by the study of Hugo et al.31, which reported that fine-tuning the weights of 
the attention layers except the FFN layers is sufficient to adapt vision transformers to other classification tasks. 
In the second approach, we added more dense layers to gradually reduce the output layers to two neurons. Then 
fine-tuned, the customized classification head along with the MHSA layers. The ImageNet dataset has 1000 
classes; thus, the final layer of the ViT has 1000 output neurons, while the proposed system requires only two 
output neurons in the final layer. Our experiment found that if the neurons are reduced to 2 directly from 1000, 
it affects the accuracy. Therefore, the neurons were gradually reduced at different steps. Firstly, the number of 

Table 8.   Parameter values of the hyperparameters explored to find the best network of each CNN based 
model.

Hyperparameters Optimization space

Models [VGG16, VGG19, ResNet50, ResNet152, Xception, InceptionV3, DenseNet121]

Epochs [25, 50, 75, 100]

Batch sizes [ 8, 16, 32]

Optimizers [SGD, Adam, Adamax, RMSProp]

Loss functions [Categorical cross entropy, Kullback Leibler divergence]

Learning rates [0.01, 0.001, 0.0001]

Dropouts [0.5, 0.6, 0.7, 0.8]

Figure 8.   Proposed ViT architecture for ROI detection from WSI.
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neurons was halved at each step which created a set of 9 architectures as illustrated in Fig. 9. The bottom one 
has 10 layers. Then another 28 approaches were produced from the bottom architecture by skipping only one 
layer from these 9 architectures. For example, 1000 − 512 − 256 − 128 − 64 − 32 − 16 − 8 − 2 architecture was 
produced by skipping the 4-neuron layer. After that, 2 layers were skipped at a time which continued to skip 7 
layers at a time. In total, 58 different architectures were produced for the second approach. In both approaches, 
a classification token was added to the sequence of patch embeddings as a learnable parameter of the model. 
The classification layers only received the final representation corresponding to this token, the transformer’s 
output. This represents an aggregate of the patches. Following the linear mapping and the class token integration, 
standard learnable position encoding associated with the position was added to the model.

In this study, the ViT-B/32 models were used with a 32 × 32 input patch to keep the training time short. The 
ViT-B/32 is a base variant with 86 million parameters which is the minimum among all variants of ViT. ViT 
models are also computationally faster with large patches such as 32 × 32. The models were trained for 100 epochs 
using two different optimizers, AdamW and SGD and a sparse categorical cross-entropy loss function. The model 
contains 24 pairs of MHSA and FFN. Then, all the CNN and ViT-based networks were compared and the network 
with the highest test accuracy was selected for the proposed system, which is ViT (1000 − 128 − 64 − 32 − 2) 
network derived from the second approach in which both the MHSA layers and the customized classification 
layers were fine-tuned.

The above experiment was performed for both 10 × and 20 × images. Additionally, the resiliency of the 
models was tested by applying it to different magnification images. For example, the trained using 10 × images 
were tested for 20 × images and vice-versa. The time requirements of these models were also estimated for the 
same WSI. Finally, the model for the proposed method was selected based on its performance on the test data-
set. The ViT-based model achieved the highest accuracy, sensitivity and specificity in the test for both 10 × and 
20 × image-based experiments. The 10 ×-based ViT achieved 97% accuracy, slightly lower than the 20 ×-based 
ViT. However, the 10 ×-based ViT is approximately two times faster than its counterpart. Thus, the 10 ×-based 
ViT model is selected for the ROI detection. Finally, the proposed method was integrated with the Shimaris 
HER2 grading system and demonstrated for five randomly selected breast cancer patients for HER2 grading. 
The proposed ROI selection method increased the correlation of the computerized grading with the clinical 
results. In the test-retest experiment, the Shimaris system produced consistent results when integrated with the 
proposed method.

ROI detection from WSI.  The ROI detection process starts with dividing the entire WSI into fixed-size 
non-overlapped image blocks of 224 × 224 pixels at 10 × magnification. Then each image block is evaluated 
for tissue area and artifact using the 1 × version of the corresponding block. If a block contains more than 75% 
pixels with an intensity value higher than 200, it is rejected as it contains mostly fat or empty area and minimal 
tissue. A block is also rejected if it contains tissue artifacts. The rest of the blocks are evaluated for image quality 
to ensure that only good-quality blocks are used for ROI detection. For image quality evaluation, 10 × images are 
utilized. After that, good quality blocks are classified by the proposed ViT model as representative ROI and non-
representative ROI at 10 × magnification. Then, the classification results and their coordinate location are copied 
to the CISH or FISH WSI from the H &E WSI using an image registration application. Then the detection ROIs 
are utilized for HER2 grading or such image analysis. The architecture of automated WSI analysis incorporating 

Figure 9.   Example of nine different approaches to gradually reduce the neurons to fit two output neurons in the 
final layer.
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the proposed ROI detection method is illustrated in Fig. 10. This design can be used with necessary adjustments 
for other WSI-based image analysis applications.

Data availability
The datasets generated and analyzed during the current study are available in the https://​wiki.​cance​rimag​ingar​
chive.​net/​pages/​viewp​age.​action?​pageId=​11970​2524#​11970​2524d​22437​cd73f​54bb3​812b2​ff952​d61a11 Cancer 
Imaging Archive. The results presented here are in part based upon data generated by the http://​cance​rgeno​me.​
nih.​gov/ TCGA Research Network.
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