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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• CuO NPs was synthesized exploiting 
Averrhoa carambola leaf extract. 

• XRD, XPS, FESEM, EDX, DLS, UV–Vis, 
Zeta potential analysis was done for 
characterization. 

• XRD, XPS and SPR spectra confirmed 
the formation of CuO NPs. 

• Particle size was measured by using DLS 
technique and imageJ software based on 
FESEM image. 

• CuO NPs showed sublime antibacterial 
activity against both gram positive and 
gram negative bacteria.  
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A B S T R A C T   

Herein, we report our assiduous endeavor to meet one of the demands of 21st century, the green route of synthesis, 
for copper (II) oxide nanoparticles (CuO NPs) using Averrhoa carambola leaf extract for the first time. The synthe
sized CuO NPs was characterized by XRD, XPS, FESEM, FTIR, DLS, zeta (ζ)-potential and UV–Vis spectroscopic 
techniques. XRD revealed the monoclinic crystalline phase of the CuO NPs with crystallite size of 24.84 nm. XPS 
confirmed the surface elemental composition and Cu2+ oxidation state of CuO NPs. The formation of NPs was 
confirmed by the surface plasmon resonance (SPR) spectra based on the sharp absorption at 220 nm. FESEM images 
showed assorted shapes albeit spherical shapes were the dominant ones. The calculative particle size based on the 
FESEM images was 98 ± 26 nm whereas DLS analysis showed larger particle size (117 nm) because of hydro- 
dynamic volume. Zeta-potential of the synthesized CuO NPs was found to be − 13.65 mV at neutral pH. FTIR 
analysis confirmed the presence of metal-oxide (Cu–O) bond. The synthesized CuO NPs were exploited as an 
antibacterial agent against 2 gram positive (Bacillus megaterium and Staphylococcus aureus) and 3 gram negative 
bacteria (Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa). Salmonella typhi and Escherichia coli were 
found to be highly vulnerable to CuO NPs with the highest zone of inhibition of 26 mm and 24 mm respectively. Bio- 
resource based green synthesized CuO can be a potential candidate in the array of nanomedicine considering its 
fascinating activity against broad spectrum bacterial strains.  
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1. Introduction 

Resistance to antimicrobial agents of pathogenic microorganisms 
(bacteria, fungi, viruses) over the years has become a concernment 
because of which evolution of new antimicrobial materials is a must [1, 
2]. Antibiotic misuse has been the leading cause of multidrug resistance 
in several bacterial strains [3]. A number of diversified bacteria manifest 
antibiotic resistance via distinct ways like reducing the activity of drug 
degradation enzyme, altering membrane permeability, altering genetic 
material (DNA), biofilm forming defensive mechanism along with 
multi-drug efflux pump developments and results in lower bioavail
ability of therapeutic drugs in the site of action [4–6]. Therefore, 
extensive propagation of gram positive and gram negative bacteria ex
hibits multidrug resistance to broad spectrum antibiotics like penicillin, 
cephalosporin etc. which are the major categorized beta lactam drug 
[7]. Subsequently, conventional antibiotic concentrations become 
inadequate at the site of action which enables increasing antibiotic doses 
and frequencies of administration associated with more detrimental 
effects and poor patient compliance. Hence, drug delivery systems are 
targeted to shoot up the antibacterial potency of available conventional 
antibiotics [3,8]. 

Since the last few decades, nanomaterials have attained interest in 
designing antimicrobial agents and enabled researchers to boost up a 
way to begin where conventional antibiotics failed to work [9]. Such 
antimicrobial agents can be of organic or inorganic origin where the 
inorganic antibacterial materials exhibit good chemical and physical 
properties with less hazardous effect to human health and environ
mental pollution [10]. Nanobiotechnology has made things easier by 
designing inorganic nanoparticles particularly for antimicrobial pur
poses [11] where they show their activity by disrupting the cell mem
brane of organism and thus preventing the formation of drug-resistant 
bacteria. The use of metal nanoparticles i.e., Ag, Au, Ti, Cu, Zn as 
antimicrobial agents is well established and have been used for centuries 
[2,12]. There have been an upsurge of literatures that reports the anti
microbial activity of metal oxide nanoparticles, mostly of CuO [13], ZnO 
[14], TiO2 [15], Ag2O [16], Al2O3 [17], Fe2O3 [18], NiO [19], CaO [20], 
MgO [21], CoO [22] and SiO2 [23] NPs. 

Among these metal oxide NPs, CuO NPs has attained noteworthy 
significance in current years due to their multidisciplinary applications 
such as catalysis [24], heat transfer operations [25], steam reforming 
[26], CO oxidation of automobile exhaust gases [27], photocathodes for 
photoelectrochemical water splitting application [28], catalysts for the 
water-gas shift reaction [29], gas sensors [30], anti-tumor [31], 
anti-microbial, anti-oxidant and drug delivery agent in biomedicine 
[32] etc. CuO is a p-type semiconductor which is abundant in nature as 
starting material with low production cost and its nontoxic behavior 
[33]. Several synthesis procedures such as reverse microemulsion, so
lution combustion, thermal decomposition, hydrothermal and thermal 
oxidation, chemical and sonchemical etc. are being followed for syn
thesizing CuO NPs. Alternative ways of synthesis are in demand since 
these methods involve hazardous chemicals, cost ineffectiveness and 
non-environment friendliness [34]. Moreover, energy crisis and intri
cate challenges of physical and chemical approaches embolden re
searchers to unearth substituted possibilities [35]. 

Bio-resource based green synthesis is one possible solution of such 
limitations because of eco-friendliness, less toxicity and ease of adap
tation according to myriad number of researchers [36,37]. This tech
nique either utilizes micro-organisms (bacteria, fungus, algae etc.) or 
plant extracts (fruit, leaf, flower, seed etc.) for synthesizing CuO NPs 
where the later has attained much consideration due to simplicity and 
ease of implementation [35,38]. Plant extracts in particular contain 
assorted functional molecules such as phenol, ketones, amides, carbox
ylic acids, aldehydes, terpenoids, enzymes and flavones which help in 
reducing the precursor material into CuO NPs as well as stabilizing the 
NPs [39]. Literatures reported a large number of synthesis procedures of 
CuO NPs using leaf extract such as Ruellia tuberosa [38], Drypetes sepiaria 

[40], Nerium oleander [41], Aloe Vera [42], Ixiro coccinea [43] and 
Eucalyptus Globulus [44] etc. Furthermore, CuO NPs have been evi
denced to demonstrate enhanced antibacterial activity against both 
pathogenic Gram positive and Gram negative bacterial strains such as 
Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumonia, Proteus 
vulgaris, Salmonella typhi, Pseudomonas aeruginosa, Escherichia coli and 
Bacillus subtilis etc. [45]. 

Here in our work, we have synthesized CuO NPs utilizing leaves of 
Averrhoa carambola as capping and reducing agent. Averrhoa carambola 
belongs to the family of Oxalidaceae and extensively cultivated in the 
South-East Asian Region where commonly known as Kamranga [46,47]. 
Averrhoa carambola contains different types of phytochemicals such as 
saponins, alkaloids, flavonoids, tannins, antioxidants, proanthocyani
dins and L-ascorbic acid etc. [48]. The Averrhoa carambola mediated 
synthesized CuO NPs was investigated for antibacterial activity 
following the well diffusion method against 2 gram positive (Bacillus 
megaterium and Staphylococcus aureus) and 3 gram negative bacteria 
(Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa). 

2. Materials and methods 

2.1. Materials 

The precursor, copper sulfate pentahydrate (CuSO4.5H2O) was pro
cured from Merck, India and sodium hydroxide (NaOH) used in pH 
adjustment was bought from Scharlau Chemies S.A. All the other 
chemicals (analytical grade) were used in the experiment without 
further purification. De-ionized (DI) water was used to prepare solutions 
in all experiments. Matured Averrhoa carambola leaves were collected 
from the local area of Bisnopur, Magura, Bangladesh on July 2022. 

2.2. Methods 

2.2.1. Preparation of leaf extract solution 
At the very beginning, Averrhoa carambola leaves were washed 

thoroughly with tap water to remove the adherent dirt followed by 
rinsing with DI water. Then the leaves were sun dried for 72 h and then 
subjected to grinding for making powder which eased its storing at an air 
tight container in desiccators. For preparing stock extract solution, 5 g of 
leaf powder was mixed with 80 ml DI water and heated to 60 ◦C for 60 
min in a 500 ml beaker. After cooling down to room temperature, the 
slurry was filtered through whatman-1 filter paper and the collected 
filtrate was stored in 4 ◦C until further use. This extract solution was 
used within 7 days of preparation. 

2.2.2. Synthesis of CuO NPs 
20 g CuSO4.5H2O was dissolved in 100 ml DI water in which 10 ml 

leaf extract was added. The pH of the solution was adjusted to 9 by 
adding NaOH. The mixture was then subjected to heating at 80 ◦C and 
stirring was maintained at 400 rpm for 60 min. The completion of the 
reaction was visually observed by tracking the change of color of the 
solution from initial bluish green to brownish black within 60 min, 
indicating the formation of CuO Nps. After cooling down to room tem
perature, the solution was centrifuged at 5000 rpm for 10 min and 
filtered. Remaining residue was collected and washed several times with 
DI water followed by absolute ethanol. After washing several times, the 
residual solid CuO NPs was dried in an oven at 60 ◦C for 5 h. The syn
thesis scheme of Averrhoa carambola extract mediated CuO NPs is shown 
in Fig. 1. 

2.2.3. Characterization of CuO NPs 
The phase confirmation of Averrhoa carambola extract mediated 

synthesized CuO NPs was carried out using Rigaku Smart Lab X-ray 
powder diffractometer. The XRD pattern was recorded within the 2θ 
range of 30–70◦ (fixing step 0.01o, scanning rate 30o/min, voltage 40 kV 
and current 50 mA). Bragg–Brentano para-focusing geometry was used 
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in recording the data. Matching of the XRD pattern was done with X’Pert 
highscore plus software with ICDD database. 

X-ray photoelectron spectroscopy (XPS) was employed for the 
elemental confirmation and oxidation state of the elements present in 
the synthesized CuO NPs, using K-Alpha XPS machine (Thermo Scien
tific). The machine utilized monochromatic Al Kα radiation which has 
maximum energy up to 1486.69 eV. The ATR-FTIR (Attenuated Total 
Reflectance-Fourier Transform Infrared) spectroscopic analysis was 
done with MIRacle-10 ATR mounted IR Prestige-21 (Shimadzu Corpo
ration, Japan). The wavenumber range was 400-4000 cm− 1 with reso
lution of 4 cm and number of scans were 30. 

Particle size and zeta potential was measured using a DLS (dynamic 
light scattering) particle size analyzer (Malvern Panalytical Zetasizer 
Ultra). To lessen agglomeration, the powdered CuO NPs sample was 
finely dispersed in ethanol and sonicated for 30min before the analysis. 
Field emission scanning electron microscopic (JEOL JSM-7610F) images 
were captured for morphological study of the CuO NPs. The optical 
properties of CuO NPs was analyzed by dispersing fine CuO NPs particles 
into absolute ethanol by sonication then taking measurements using 
Hitachi U-2910 UV–Vis spectrophotometer. 

2.2.4. Antibacterial activity study 
The antibacterial activity study of the synthesized CuO NPs was 

carried out against Escherichia coli (ATCC 11303), Pseudomonas aerugi
nosa (ATCC 39327), Salmonella typhi (ATCC 13311), Staphylococcus 
aureus (ATCC 9144) and Bacillus megaterium (ATCC 9885). All these 
bacterial strains were purchased from American Type Culture Collection 
(ATCC, Manassas, USA). The antibacterial activity was determined by 
agar well diffusion method reported elsewhere [49]. Prior to the ex
periments, bacterial colonies were cultured overnight in Mueller–Hinton 
Broth (MHB) in a shaking incubator (120 rpm at 37 ◦C ±2 ◦C). The 
cultured colonies were then diluted up to 1:100 with fresh MHB and 
cultured until it complied the 0.5 McFarland turbidity standards. The 0.5 
McFarland turbid suspensions of bacteria were again diluted up 
to1:1000 to attain 1 × 105 CFU/ml. 

2.2.5. Agar well diffusion assay 
All the glassware and related accessories for this experiment were 

autoclaved (temperature 121 ◦C, pressure 115lb) beforehand. To pre
pare the agar media, 4.6 g Mueller–Hinton (MH) agar (Oxoid, UK) 
powder was dissolved in 200 mL DI water and autoclaved. After 

autoclaving, the MH media was allowed to cool down to around 40 ◦C 
after which 50 μL of bacterial colonies were added to the media. This 
media was then poured into agar plates. Two wells with diameter of 6 
mm were created aseptically using sterile micropipette tips on each agar 
plate after solidifying the media. 50 μL of synthesized CuO NPs with a 
concentration of 100 μg/mL was loaded in one of the MH agar wells. 
Other well was loaded with dimethyl sulfoxide (DMSO) (5%) as a 
negative control. 30 μg disk of Kanamycin was placed on the surface of 
the media as the positive control. The plates were then kept at 4 ◦C for 3 
h, allowing the penetration and diffusion of nanoparticles through the 
well, followed by incubation at 37 ◦C. After 24 h of incubation, clear 
zones also known as zone of inhibition were found around the wells and 
the diameter of these zones measured using a slide caliper. 

2.2.6. Minimum inhibitory concentrations (MICs) 
MIC of the synthesized CuO NPs were performed by standard broth 

dilution method (CLSI M07-A8) reported elsewhere [50,51]. Briefly, two 
fold serial dilutions were done for CuO NPs with Brain Heart Infusion 
(BHI) broth for MIC determination. Five concentrations of CuO NPs: 
6.25 μg/mL, 12.5 μg/mL, 25 μg/mL, 50 μg/mL and 100 μg/mL were 
studied against a bacterial concentration of 1 × 105 CFU/ml. In screw 
cap test tubes, BHI broth containing bacterial strain was used as positive 
control and the only broth was used as negative control. All the tubes 
containing considered samples were incubated for 24 h at 37 ◦C. MIC 
was determined by visual inspection of the turbidity of the samples 
before and after incubation. 

2.2.7. Minimum bactericidal concentrations (MBCs) 
The procedure for MBC study was analogous to MIC study with 

pintsized addition. After visual determination of MIC, 2 ml BHI broth 
media was added in each tube and incubated again for 24 h at 37 ◦C. 
After incubation, 50 μL sample was withdrawn from the tubes which did 
not show any bacterial growth and placed in BHI agar plates for culture 
(incubation at 37 ◦C for 24 h) and observation of bacterial growth [50, 
51]. 

3. Results and discussion 

3.1. X-ray powder diffraction study 

The XRD pattern shown in Fig. 2 depicts the orientation and 

Fig. 1. Synthesis scheme of Averrhoa carambola extract mediated CuO NPs.  
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crystalline structure of the Averrhoa carambola L. extract mediated green 
synthesized CuO NPS. The pattern shows a series of diffraction peaks at 
2θ angles of 32.15◦, 35.64◦, 38.69◦, 48.81◦, 52.72◦, 58.10◦, 61.72◦, 
66.08◦ and 68.40◦ which corresponds to the (110), (− 111), (111), (202), 
(020), (202), (− 113), (− 311) and (113) crystal planes respectively. Such 
findings are in harmony with the previous literatures [34,52,53]. The 
pattern has the best match with the ICDD (International Centre for 
Diffraction Data) card no #01-080-1268 [54,55]. The presence of two 
sharpest peaks within the 2θ diffraction angle of 35◦ and 39◦ confirms 
the formation of monoclinic structured CuO NPs [44]. 

The crystallite size (D) of a material can be defined as the coherent 
volume for the respective diffraction peak which is also termed as grain 
size for powdered materials. Crystallite size of the synthesized CuO NPs 
can be calculated using the widely accepted Scherrer formula, shown in 
equation (1) [56,57], 

D=
kλ

β cos θ
(1) 

Here, λ is the wavelength of the incident X-Ray beam (0.154060 nm), 
K is a constant which is usually referred to the broadening constant and 
is equal to 0.9, β is the full width half maxima (FWHM) in radians and θ 
is the diffraction angle in degrees. 

The crystallographic parameters (unit cell lengths, volume of unit 
cell and density) were calculated using the following equations (2)–(4) 
[58], 

1
d2 =

1
Sin2 β

(
h2

a2 +
k2 Sin2 β

b2 +
l2

c2 −
2hlcosβ

ac

)

(2)  

V = abc sin β (3)  

d =
∑ A

N × V
(4) 

Here, V, N and A are volume of unit cell, Avogadro’s number 
(6.02214076 × 1023mol− 1) and sum of atomic weight of all the atoms 
belonging to the unit cell respectively. Equation (4) represents the 

density of monoclinic structure and for CuO which has 4 molecules in 
the primitive structure, equation (4) can be written as the following 
equation (5), 

dCuO =
∑ 4 × M

N × abc sin β
(5)  

Here, M is the molecular weight of CuO (79.545gmol-1). The micro- 
strain (ε) and dislocation density (δ) of the CuO monoclinic structure 
can be calculated from the following equations (6) and (7) respectively 
[58,59], 

ε= β
4 tan θ

(6)  

δ=
1

(D)
2 (7) 

The calculated results of crystallographic parameters have been 
compared with the standard values (from ICDD card no #01-080-1268) 
and presented in Table 1. 

3.2. XPS analysis 

The elemental confirmation and oxidation state of the elements 
present in the Averrhoa carambola extract mediated green synthesized 
CuO NPs were carried out in terms of XPS analysis. Fig. 3a shows the 
survey spectra which confirmed the presence of Cu and O as elements. 
Trace amount of Na and S were also detected which may have been 
incorporated from NaOH (used for pH adjustments) and the precursor 
material CuSO4.5H2O respectively. Narrow scan for selected elements i. 
e., Cu 2p, O 1s and C 1s were also carried out which are shown in Fig. 3 
(b–d). 

The presence of Cu as an elemental constituent of CuO rather than 
Cu2O or metallic Cu was confirmed by the detection of shake-up satellite 
peaks upon narrow scan of Cu 2p as shown in Fig. 3b. Two shake-up 
satellite peaks were observed at the higher binding energy sites of the 
Cu 2p3/2 peak as well as increased binding energy was observed for the 
main peak. This indicates the presence of an unfilled Cu 3d9 shell which 
also confirmed the Cu2+ oxidation state of CuO NPs [60]. The peaks at 
952.58 and 932.75 eV (Fig. 3b) correspond to the characteristic Cu 2p1/2 
and Cu 2p3/2 of Cu2+ oxidation state of CuO NPs, also reported in pre
vious literatures [61–63]. The duplet separation of binding energy be
tween Cu 2p1/2 and Cu 2p3/2 was 19.83eV, which is also characteristic 
for CuO nano-structure [63,64]. 

The core level narrow scan spectra of O 1s is shown in Fig. 3c. The de- 
convolution of asymmetric core level 1s spectra of O resulted in two 
peaks at 529.91 and 531.51 eV positions, indicating the existence of two 
different types of oxygen on the CuO NPs surface. The peak at 529.91 eV 
corresponded to the oxygen from metal-oxygen bond, in this case the 
bond between O2− and Cu2+ ions of monoclinic CuO [62]. The more 
intense peak was observed at 531.51 eV position which can be assigned 
to the surface adsorbed oxygen or the oxygen originated from the phy
tochemicals of Averrhoa carambola extract that acted as the reducing as 
well as the stabilizing agent [65]. 

The narrow scanned spectra of C 1s is shown in Fig. 3d. The de- 
convoluted peak observed at 284.81, 286.32 and 288.51 eV can be 
assigned to the C–C, C–O–C and O–C––O bond respectively. These peaks 
can be corresponded to either as adventitious carbon contamination or 

Fig. 2. XRD powder diffraction pattern of synthesized CuO NPs.  

Table 1 
Lattice parameters (experimental and ICDD values), micro-strain and dislocation density of the synthesized CuO NPs.  

Lattice Parameters a (Å) b 
(Å) 

c (Å) Volume of Unit Cell 
V, (Å)3 

Crystal density, dCuO 

(g/cm3) 
Micro-strain, ε 
× 10− 2 

dislocation density, δ ×
10− 4 nm− 1 

Crystallite size, D 
nm 

Experimental values 4.72 3.47 4.92 79.58 6.64 26.13 16.21 24.84 
ICDD values (Card No #01- 

080-1268) 
4.68 3.42 5.13 81.03 6.52 – – –  
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the carbon sources originated from the leaf extract [62,66,67]. The 
adventitious carbon peak of 284.81 eV was used as a reference peak for 
the correction of binding energy [66]. 

3.3. FESEM and EDX analysis 

The Averrhoa carambola L. extract mediated synthesized CuO NPs 
have been found to be spherical, oval and irregular shaped (Fig. 4 a and 
b) under electron microscope where spherical shapes are the most 
dominant ones, also reported in previous literature [68]. The formation 
of larger particles (100–170 nm) are due to the agglomeration of the 
smaller particles which also made the structures irregular shaped. There 
was no presence of any sort of chunks which eliminated the possibility of 
extract overuse. Based on the FESEM image, the particle size was 
measured using imageJ software following the previously reported 
process [58]. Only the particles that aren’t agglomerated and have 
visible edges were under consideration. The particle size histogram in 
Fig. 4 (c) shows the average particle size to be of 98 ± 26 nm. For further 
insights into the elemental composition of the synthesized CuO NPs, the 
EDX spectra was recorded at 5.0 kV. The peaks appeared for Cu and O 
corresponded to Cu Lα and O Kα. Negligible peaks were disregarded in 
the spectra such as carbon and platinum that appears due to the carbon 
tape adhering the sample to the stub and from conducting coating of the 
sample respectively. The resultant weight and atom % of Cu was 74.06% 

and 41.83% whereas O has weight and atom % of 25.94% and 58.17% 
respectively. The EDX spectra and elemental % has been shown in Fig. 4 
(d). 

3.4. ATR-FTIR analysis 

The ATR-FTIR analysis of the Averrhoa carambola L. extract and 
synthesized CuO NPs were carried out to confirm the presence of func
tional groups. The spectra were recorded within the wavenumber range 
of 400-4000 cm− 1 and have been shown in Fig. 5. ATR-FTIR spectra of 
both extract and CuO NPs show peak at 3307 and 3390 cm− 1 and can be 
assigned to the –OH stretching vibrations which can either be from the 
phenolic groups of extract or the moisture since nanoparticles are prone 
to absorb moisture from the environment. Two adjacent bands at 2920 
and 2852 cm− 1 were observed for the extract (Fig. 5a) can be assigned to 
the –CH and -CH2 stretching vibrations of primary alkanes which was 
also found at 2985 and 2899 cm− 1 for the CuO NPs (Fig. 5b) [69–71]. 
The C––O and N–H bond vibrational bands appeared at 1618 cm− 1 for 
the extract and 1636 cm− 1 for CuO NPs. The vibrational bands at 1436, 
1369, 1319 and 1246 cm− 1 correspond to the C–N stretching and –OH 
bending vibrations which also indicate the presence of flavonoids and 
reducing sugars on Averrhoa carambola L. extract [72]. Sharp peak at 
1039 and 1085 cm− 1 corresponds to the C–O stretching bands of the 
carboxylic and phenolic groups [73]. Usually, the vibrational bands for 

Fig. 3. XPS spectra of Averrhoa carambola extract mediated green synthesized CuO NPs (a) survey, (b) Cu 2p, (c) O 1s and (d) C 1s spectra. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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metal-oxygen bonds are observed under 1000 cm− 1 region. The bands at 
428, 457, 495, 541, 555, 599, 636, 732 and 781 cm− 1 corresponds to the 
Cu–O bond of the synthesized CuO NPs [34,44,52,53,58,68,69,74,75]. 
According to the prediction of group theory, the IR active modes of 

monoclinic CuO structure are 3Au+3Bu which involves the motion of 
both Cu and O atoms [75,76]. The bands at 428 and 599 cm− 1 can be 
assigned to the Au and Bu modes respectively which are also the char
acteristic peaks for monoclinic structured CuO NPs [69]. There were no 

Fig. 4. (a and b) FESEM images of synthesized CuO NPs, (c) Calculated particle size histogram (d) EDX spectra with weight and atom %.  

Fig. 5. FTIR spectra of (a) Averrhoa carambola L. extract and (b) synthesized CuO NPs.  
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vibrational peaks present within the wavenumber range of 615-621 
cm− 1 which eliminates the possibility of the formation of Cu2O [74]. The 
stretching vibrations at 871, 941 and 985 cm− 1 corresponds to the C–O 
bonds [69]. 

3.5. UV–Vis spectroscopic analysis 

The optical properties of the Averrhoa carambola L. extract mediated 
synthesized CuO NPs was carried out by UV–Vis spectroscopic analysis 
(Fig. 6). Such analysis is also a way of confirming the formation of 
nanoparticles because of the phenomena named surface plasmon reso
nance (SPR). According to the basic understanding of SPR, when photon 
interects with the conduction band electrons of the metal/metal oxide 
nanoparticles, it begets a resonance effect [77,78]. This resonance effect 
only occurs when the frequency of the incident photons matches with 
that of the surface electrons [79]. Since the properties of nanoparticles 
differes from bulk materials, UV–Vis spectroscopic analysis helps in 
differentiating between them in terms of SPR. The UV–Vis spectrum of 
CuO NPs shows a sharp absorption peak at 220 nm along with two 
smaller peaks at 242 and 381 nm respectively. The apex at 220 nm was 
also reported in previous literature [80–82] and values of other peaks 

are also consistent with reported literatures [71,83,84]. 

3.6. Particle size and zeta potential analysis 

The particle size of the synthesized CuO NPs was measured by DLS 
analyzer which implemented the Multi Angle Dynamic Light Scattering 
(MADLS) technology for better measurement of the particle size. The 
particle size distribution of CuO NPs is shown in Fig. 7a. 

The most prevailing particle sizes were seen to be within 100–150 
nm range with the calculated average particle size of 117 nm which is 
slightly higher than the particle size calculated from FESEM analysis. 
Two factors might be responsible for such phenomena, one may be due 
to the agglomeration of particles in the aqueous solution [85] and letter 
is due to the hydrodynamic diameter of the NPs that are being counted 
by the DLS particle size analyzer [58]. Particles at smaller sizes (20–50 
nm) were also observed but in lesser magnitude. This might be the 
reason for the multiple peaks that were observed in the SPR spectrum of 
the CuO NPs (Fig. 6). The obtained polydispersity index (PDI) of 0.5815 
is also indicative of the less monodispersity of the synthesized CuO NPs. 
The stability of the obtained nanoparticles was measured by the zeta 
potential analysis which is shown in Fig. 7b. The measured zeta poten
tial of CuO NPs at neutral pH was found to be − 13.65 mV. The negative 
value is attributed due to the formation of OH− groups that forms on the 
surface of the nanoparticles when dispersed in the aqueous solution 
[58]. The magnitude of zeta potential (− 13.65 mV) signifies the possible 
agglomeration of the particles due to Van Der Waals interparticle 
attraction [86] which was also evident from the FESEM images. 

3.7. Antibacterial activity of CuO NPs 

The antibacterial activity of the synthesized CuO NPs was evaluated 
in vitro against broad spectrum gram positive and gram negative bac
terial strains with reference to broad spectrum antibiotic Kanamycin 
(30 μg disk) and has been shown in Fig. 8. 

Zone of inhibition was recorded after 24 h of incubation for 100 μg/ 
mL concentration of CuO NPs against 3 gram negative bacteria 
(Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa) and 2 
gram positive bacteria (Bacillus megaterium and Staphylococcus aureus). 
Clear zone of inhibition was observed for both the gram positive and 
gram negative bacteria. The gram negative bacteria were more sensitive 
to the biosynthesized CuO NPs compared to gram positive bacteria and 
Salmonella typhi was the most susceptible (26 mm) to CuO NPs. Escher
ichia coli was also susceptible (24 mm) and Pseudomonas aeruginosa was 
the least susceptible one (16 mm) among them. Bacillus megaterium and 
Staphylococcus aureus had the zone of inhibition of 20 mm and 16 mm 

Fig. 6. UV–Vis spectrum of Averrhoa carambola L. extract mediated synthesized 
CuO NPs. 

Fig. 7. (a) DLS particle size and (b) zeta potential of the synthesized CuO NPs.  
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respectively. This also carries good evidence of antibacterial efficacy of 
Averrhoa carambola L. extract mediated green synthesized CuO NPS 
against gram positive bacteria. Fig. 9 shows the comparative antibac
terial results of CuO NPs and broad spectrum antibiotic Kanamycin. 

3.8. MIC and MBC study 

Minimum inhibitory concentration is the lowest concentration at 
which antimicrobial agent show bacteriostatic activity. The MIC of CuO 
NPs was determined for 3 gram (ve-) bacteria and 2 gram (ve+) bacteria 
(Table 2). The concentration of CuO NPs was chosen from 6.25 μg/mL to 
100 μg/mL. According to the results, 50 μg/mL concentration of CuO 

NPs was found to be effective against all the selected bacterial strains 
and thus, the MIC of Averrhoa carambola extract mediated green syn
thesized CuO NPs is reported to be of 50 μg/mL. 

MBC is the lowest concentration of antimicrobial agent which is 
bactericidal. For the detection of MBC, concentration of 6.25 μg/mL-100 
μg/mL of CuO NPs was considered. After 24 h incubation period, the 
concentration which did not show any bacterial colony would be 
described as MBC (Table 3). According to the results, 100 μg/mL con
centration of biosynthesized CuO NPs was bactericidal for all selected 

Fig. 8. Agar well diffusion measurements of CuO NPs against (a) Escherichia coli, (b) Salmonella typhi, (c) Pseudomonas aeruginosa, (d) Bacillus megaterium and (e) 
Staphylococcus aureus. 

Fig. 9. Comparative antibacterial activity of CuO NPs and broad spectrum 
antibiotic Kanamycin against 3 gram negative and 2 gram positive bacteria. 

Table 2 
MIC results of Averrhoa carambola extract mediated green synthesized CuO NPS.  

Bacterial Strains 100 μg/ 
mL 

50 μg/ 
mL 

25 μg/ 
mL 

12.5 μg/ 
mL 

6.25 μg/ 
mL 

Escherichia coli - - - - - 
Pseudomonas 

aeruginosa 
- - - - +

Salmonella typhi - - - + +

Bacillus megaterium - - - + +

Staphylococcus 
aureus 

- - + + +

*Note: ‘+’ indicates presence of bacterial growth; ‘-’ indicates No bacterial 
growth. 

Table 3 
MBC results of Averrhoa carambola extract mediated green synthesized CuO NPS.  

Bacterial Strains 100 μg/ 
mL 

50 μg/ 
mL 

25 μg/ 
mL 

12.5 μg/ 
mL 

6.25 μg/ 
mL 

Escherichia coli - - - - - 
Pseudomonas 

aeruginosa 
- - - + +

Salmonella typhi - - + + +

Bacillus megaterium - - + + +

Staphylococcus 
aureus 

- + + + +

*Note: ‘+’ indicates presence of bacterial growth; ‘-’ indicates No bacterial 
growth. 
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microbial strains and referred as MBC. 

3.9. Mechanism of antibacterial activity and comparative study 

The synthesized CuO NPs have been found to be highly active against 
gram negative bacteria. Several studies also claimed the highest anti
bacterial activity against gram negative bacteria [34,87–89]. This might 
be due to the fact that gram negative bacteria has comparatively thin 
peptidoglycan cell wall surrounded by lipopolysaccharide containing 
outer membrane, allowing facile perforation of NPs and thus leads to cell 
death [90]. Although the exact reason behind the high antibacterial 
activity of CuO NPs hasn’t been well established yet but there are some 
venerable mechanisms which explains the phenomena [13]. The supe
rior activity of CuO NPs may be attributed to the release of Cu ion (Cu2+) 
from CuO NPs [91,92] which has high affinity towards negative charge 
of bacterial cell wall by electrostatic forces as well as Van der Waals 
forces [93]. As a result, it presents adhesive behavior and destroy the cell 
membrane integrity leading to cell death by sabotaging enzyme activity 
and promoting cell permeability [88,94]. The generated Cu2+ enters the 
cell and induces cross linkage within the nucleic acid of DNA molecules 
of bacteria. It consequences the distorted helical structure of DNA 
causing protein denaturation, interrupted metabolic processes and 
complete eradication of cell wall of bacteria [42]. Velsankar et al. [68] 
reported the reaction as well as the mechanism of liberation Cu2+ shown 
as follows: 

CuO+H2O ↔ Cu2+ + 2OH− (8) 

This reaction proceeds with the following mechanism: 

CuO+ hϑ → e− + h+ (9)  

e− +O2 → O− ∗
2 (10)  

h+ +H2O → OH − + H+ (11)  

O− ∗
2 +H+ → HO∗

2 (12)  

HO∗
2 +H+ → H2O2 (13)  

In addition, CuO NPs generate reactive oxygen species such as super
oxide radical (O− 2), hydroxyl radical (-OH), hydrogen peroxide (H2O2), 
and singlet oxygen (O2), cascades of reactive oxygen species (ROS) by 

oxidative stress in the cell resulting protein oxidation, lipid peroxida
tion, DNA deterioration and cell necrosis [7,87]. Visual representation 
of the mechanism of antibacterial activity of CuO NPs is shown in 
Fig. 10. 

Biosynthesized CuO NPs have been exploited against various gram 
positive and gram negative bacteria and few of these reports have been 
tabulated in Table 4 along with the results of present study. 

4. Conclusion 

In this study, successful synthesis of CuO NPs was reported 
employing the leaf extract of Averrhoa carambola. The use of such plant 
extract made the process ecologically sound and cost-effective. Agar 
well diffusion method was followed for investigating the antibacterial 
activity of CuO NPs. The sublime bactericidal activity of the bio-resource 
based green synthesized CuO NPs against both gram (+)ve and gram(− ) 
ve bacterial strains can induce a new horizon for designing potential 
antimicrobial drug. 
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